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78 Outline

SACLA RIMEN

e Introduction
— Current status of SACLA

+ Design and Performance of Beam Diagnostic
Instruments and their application for beam
commissioning
— RF-BPM and Multi-Strpline BPM
— Screen monitor (OTR, YAG:Ce, Desmarquest)

— Fast differential CT

— Coherent radiation monitor to estimate the
bunch length

— Streak Camera
— C-band Transverse deflector cavity

e Summary
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78 Introduction 2

Beam Diagnostics

50MeV with Deflector Cavity o " BL1(Broad Band Beam Line)
Dump itching gy ________[_________ =

S-TWA BC2 C-TWA BC3

L-CC

SACLA
— SPring-8 Angstrom Compact Free Electron Laser
— XFEL is generated by Self-Amplified Spontaneous Emission (SASE)
e 8 GeV Linac and in-vacuum undulator beamline
— CeBg thermionic electron gun (500 kV, £ ,:0.6 mm mrad)
— Velocity bunching and 3 bunch compressors to achieve > 3 kA peak current
— C-band high-gradient accelerator (> 35 MV/m)
— Short period in-vacuum undulator (A ,: 18 mm)
— Total facility length is 700 m.

« We started beam commissioning in March 2011 and observed the first
XFEL radiation in June 2011.
« Public user experiments have been performed since March 2012.
— Photon Energy: 5 - 15 keV
— Wavelength: 0.08 - 0.25 nm

Oct. 1st, 2012 3



SACLA

1 Spectrum Comparison
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g XFEL Gain Curve
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Gain Curve
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10 Shot Average

Single Shot
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7~ Beam Diagnostic System R

SACLA RIFE
| RF-BPM: 27, SCM: 28, CT: 21 , RF-BPM: 30, SCM: 21, CT: 14 |
In E A“%nrlnent Additional beamline %
njector gCi S-band BC2 Cband BC3 i  Cband  Undyator A, ac um Undulator 18 units  yrgL
Mlmmm HEOHHT - 0 >
K K RS
Streak Camera Dump
0.5 MeV 30 MeV 0.4 GeV 1.4 GeV 8 GeV £00m
1A, 1ns 50 A, 3 ps 0.6 kA, 300 fs 3kA, 30 s 3kA, 30 fs
Om 20m 70m 140 m 400 m

« RF cavity BPM (RF-BPM) with position resolution <1 um.
— Electron beam must be overlapped with x-rays within 4 um in the undulator section.
e Multi-stripline BPM for dispersive part to monitor the beam energy
« Screen monitor (SCM) with less than 10 um resolution.
— Transverse beam profile measurement, emittance measurement etc.
— OTR, YAG:Ce or Desmarquest screen with high-resolution imaging system.
 Fast differential current transformer (CT)
— Bunch length measurement in the injector part
— Bunch charge monitor without common-mode noise.
« Coherent radiation monitors
— Coherent transition radiation (CTR) and coherent synchrotron radiation (CSR) monitor
« Streak Camera
— Resolution: 300 fs
« (C-band transverse RF deflector cavity system (RFDEF)
— Resolution: 10 fs.
— Bunch length is compressed to 30 fs.

Oct. 1st, 2012 7




Position detection

SACLA
N-type Conif__z?r Reference cavity A_('_“_%’
o] TMO10 cavity (TM110
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« TM110 dipole mode of Beam-induced RF field is used.

V = Vl qxej(wt'l'd))_t/T

« TMO10 cavity determines the phase reference and the beam charge.

V = Voqej(wt'l'd))_t/T
— Beam arrival timing can be measured.
« Resonant frequency : 4.760 GHz (C-band)

« H.Maesaka et al., Nucl. Intrum. Meth. A 696, 66 (2012).
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g RF-BPM Electronics

SACLA

|IQ Demodulator

Beam Attenuator Switch |

Basebgnd

"
=
Y.
JBUBAU0D A/Y FWA

I ! i lI>Q
60, -40,-20,0dB | QF |
RF-BPM NC0° |
476OMHZ@ i___>_<__90f_______i
Lo

4760MHz
* |Q demodulator to obtain amplitude and phase
 Attenuator switch extends the dynamic range to
100 dB
— From sub-um to a few mm

« Baseband signals are recorded by a 12-bit or 16-bit
VME waveform digitizer.
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7~ Position Resolution of RF-BPM

SACLA
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 Position resolution was analyzed for 20 RF-BPMs in the undulator section
« Estimated position at a given RF-BPM was estimated from the other BPMs.
« Measurement and estimation were almost same. (left plot)
« Resolution is defined as the rms of the difference between the measurement
and the estimation.
« Position resolution < 0.6 um (rms) (right plot)

— 7GeV, 0.1 nC

Oct. 1st, 2012
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Single-shot beam trajectory
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SACLA

ﬁﬁ/ Correlation between Beam position and XFEL intensity ﬁ

Beam B:6PM  N:Q-mag [:Undulator
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« Correlation between the beam position (x,y-axes) and FEL
intensity (z-axis)
« Easy to see what trajectory is the best.

« _Injection orbit is locked to the best point by a feedback control.
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ﬁ@/ Orbit Correction for Variable Gap Undulators

SACLA RIKZH

 RF-BPM data is used for the orbit correction for

different undulator gap.
— Beam orbit is corrected by steering magnets between
undulators
— Feed-forward table of steering magnets is prepared.

 Orbit reproducibility is within 10 um.
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&, Beam Arrival Timing Resolution £

SACLA

« Beam arrival timing can be measured by the phase of
the reference cavity (TMO010).

— Useful to monitor the timing drift of the machine
— Experimental users can use this timing data

« Required temporal resolution: < 50 fs

e Arrival timing resolution: 27 fs (STD)

— Measured by the reference cavities of two neighboring
BPMs in the SCSS test accelerator.

Entries 512
D8O [ = Mean 0.001016
. s C i | RMS 0.04615

TMO1 0 CaVitieS E 140 ;_ wode\ il Mean  0.0006878 + 0.0022705

= _F .| sigma 0.0459 = 0.0017
N 100 —Siomas

e - : : i i \ i Constant 1754 + 9.9

5 BPM 1 BPM 2 BPM 3 E / 2>|7g;na
eam 80 :__ - ............ : - S S
. 1915 mm |, soomm - / (0046 deg
_ 1o 4760 M
) - E X
0% “o0s 0o

1 ] 1 11 11 1L L1 1 1 1 Y — - 1 |
01 -0.05 0 005 01 015 0.2
Phase Difference [deg.]
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SACLA

5 Trend of the Beam Arrival Timing
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« Drift of the arrival timing is appropriately obtained.

05—

- =Exit of undulator beamline

05 FEntrance of ¥ .
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J2B121200
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600 fs

 Large drift is due to the rf phase drift in the injector section.

« Time difference between the entrance and the exit of the
undulator beamline is caused bi;the drift of the reference timing

transmission line due to the am

ient temperature drift.

Oct. 1st, 2012
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7 Multi-stripline BPM R

SACLA

Multi-stripline
Off-crest  Wide FlatBeam BPM

VT/\ Acceleration ~ 50 MM puuia. o oy
N ;;=/-+l-\=_ o
TT T T T T TTTT |:
g HEERHE RIS Bunch Compressor ‘%J

I
|
Accelerator

" Tistencas . ICF-152 | SMA vacuum )
H— 3:55%8+903 - Connectors
Bl reesees O qooomn
o o Al L | l
1. suzmc.c 2 R S i e e st o=
il;m:. 2 o | I N AT I
o WIS, 0y | .
. . i
EM simulation |

« Multi-stripline BPM is used at the dispersive part of a bunch compressor (BC),
because the horizontal beam size is large.
« Beam position at BC is important for monitoring the beam energy.
— 0.1 mm sensitivity is required for the beam energy measurement less than 0.1% resolution.

« Five stripline electrodes are equipped for each of top and bottom plane of the
rectangular beam duct.

— Characteristicimpedance: 50 ohm
— Stripline length: A/4 of 476 MHz

Oct. 1st, 2012 16




/J/ Electronics for Multi-stripline BPM €
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« Impulse signal from the stripline electrode is converted to a wave
packet of an rf signal by using a band-pass filter.

 Five signals are combined into one line by means of the group
delay of other band-pass filters and rf power combiners.

« Therfsignalis detected by an 1Q demodulator and the baseband
waveforms are recorded by VME waveform digitizer.

« Beam position is evaluated from the center of mass of the peak
voltages of the pulse signals.

Oct. 1st, 2012 17



3/5’ Arrival timin

SACLA

g, beam energy and XFEL intensity
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78 Screen Monitor @

SACLA RIMEN

Scintillator

« OTR (stainless steel foil), YAG:Ce scintillator
and Desmarquest targets were employed.

— Target is mounted on a shaft driven by a
pneumatic actuator.

« Custom-made lens system.

— Some of the profile monitors are equipped
with remote zoom system (x1 — x4).

« Resolution: 2 um (x4 optics)

« Images are taken by a CCD camera and
transferred by Cameralink.

Motorized
Stage

Oct. 1st, 2012 19
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238MHz Exit BC1 Exit CBO1 Exit
~0.4 MeV ~30 MeV ~800 MeV
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78 Coherent OTR after BC3 2

Intense C-OTR h Ring-shaped C-OTR

l"\.

-

» Intense coherent OTR was observed after BC3
— Bunch length < 100 fs
— Stainless steel screen

« Target was changed to YAG:Ce

— But, C-OTR was still observed from YAG:Ce
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Mitigation of C-OTR Problem @R

A 48 RIKZN
Scintillation <«— Coherent OTR
. _ = -~ - =~ -
3 @3mm el S~
& I - Perforated / |
Mirror/ S =

YAG:Ce A\ €D | e B anll CCD
tgﬁr’r&‘ﬁ& % Coherent OTR  Mask Lens . Screen c / HLens’

& 0.Tmm g Scintillation

.

YAG:Ce with

Perforated Mirror
' - attered light -
m hole edge

N,
o /
E . - E

3mm

« OTRis emitted forward within ~1/y radian.

 Scintillation of the YAG:Ce has no directional dependence.

« An OTR mask and a perforated mirror were tried to mitigate the C-OTR problem.
« C-OTR from the YAG screen is removed from the mask or the hole on the mirror.

« Details will be presented later

— MOCCO04 by S. Matsubara




f//Comparison between RF-BPM and Screen Monitor @

@
SACLA RIMEN

3.8GeV 4.5GeV SCM-BL3-2
5.3GeV 6.1GeV SCM-BL3-2 SCM-BL3-2

< - 6.7GeV 7.4GeV
©

YAG:Ce with OTR Mask

BL3-2 SCM vs BPM X

0.45
m 3.772GeV

_0.40
E i + 4.445GeV
;0-35 R 5.263GeV
v 0.30 % 6.067GeV
¥ 6.667GeV
0.25 7.437GeV

-0.05 0.00 0.05 0.10
BPM [mm]

« Beam position from an RF-BPM is consistent with that from the
adjacent screen monitor.

— Even if the beam energy, profile were changed.
— Error: <10 um (STD)



g Emittance Measurement

SACLA

* Q-scanning method
0,° = ,BE(LIQK +aL/B —1)*+ el?/B

Beam
:> - Screen
Monitor
fy K L
=8 —>can_ Grap _Fit & Cale_|
90 —-- -2 -eBeQ AL AR
: : | | | o Calc Parameter Set futo ALL
: ! ! ! ! ! ! | 0 Auto unit
' (Fitting y=az2+ bx + ) | STOP
-~ a = 1,29185=-05 Auto Stop |
= = [ 1,83821=-06
& = £.625182-08
;Eug Calc |
T Calc Result
Emi #(pl mm mra 1,092077
beta w(m) = 124 605438
alpha v = 16,281710
— Sttt
S ‘ {,em? 0T P, Data Clear | [  0.000

Normalized vertical emittance: 1.09 mm mrad after BC3 (1.4 GeV)



/'/ Fast Differential Current Transformer k

Magnetic core [ |Positive port
(u>10 at 1 GHz) Ceramic insulator

)

Oppositely coiled.

Oct. 1st, 2012

>,
b
g
5
)
Positive port

Pickup coil (1 turn)

2 positive ports and 2 negative ports

Common-mode noise can be subtracted.
Rise time: ~ 200 ps (10 - 90 %)
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ﬁ/ CT Data 3

CT-238

Gun
5
Accelerating voltages of ;
238MHz sub-harmonic — 4
buncher cavity was o
(@] 3 |
scanned. ©
©
> 2L
o
0
-1

Time [1 ns/div ]

« Bunch length in the velocity bunching region can
be measured by using raw signals from the CT.

« Bunch length: 400 ps (FWHM) minimum.

Oct. 1st, 2012 26



g CTR Monitor 2

To A/D Converter,

\ ~ N
i S,
L Y
e LAY
T e A\
o~ T\
. Id
:
Coherent .

Transition Radiation | i &, | CTR Detector %

—_ = ~

Viewing
Port
I

Fluorescent

Screen ﬂIP”’ R“x,)-
— i_' — P - -
- ! ii -\ o RF Detector
I Retractable - - Lens Antenna
Q Mirror ..+
' Rectangular
Waveguide
e Coherent transition radiation from a fluorescent screen is
detected.

« By using a cut off of a rectangular waveguide, this works as a
single-shot spectrometer.

 Inthe injector part, about 10 GHz rf signal is obtained.
— Bunch length ~ 100 ps
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>3GHz |/

SCM-476 \ = e
cmm {20 —e— 1D Simulat
| P c b
j—“{ —-0x =] - simulation
476 MHz * < / >6GHz
booster CTR Monitor/ B ¢
z \
E 60 A
3 “»
Accelerating voltages of 238MHz sub-harmonic c v >12GHz
buncher cavity was scanned. i
(476 MHz booster was turned off.) U v >24GHz

0 A
150 160 170 180 190 200 210 220

238MHz Voltage [kV]

« The signal strength has a correlation with
the bunch length.
— Consistent with 1D simulation

— Amplitude and phase of the sub-harmonic
cavities can be determined
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SACLA

« (SR (Coherent Synchrotron Radiation) CSR spectra (simulation)
spectrum has a strong correlation with o
bunch length.

« CSRintensity was measured by a THz
detector non-invasively.

* Pyro-electric detector or THz diode

« CSR from the 4th bending magnet of 1 THz
each bunch compressor is monitored. L A

—BC1| |
—BC2| |
—BC3| |

1010 L

108

108
10 |

10%

Photons/s/mm?0.1%BW

1d14 10‘]15 10I16 1d17
((\ Frequency (Hz)
Q)e’b AR [ “3-

Mirror with
Beam Hole

Mirror -
Dipole Magnet |
THz Lens<_ >

Pyro-electric Detector ar
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SACLA

g CSR Data R

rRIM=N

CSRintensity v.s. Charge CSRintensity v.s. Bunch length

0.40 _ 0.32
S & S 051 . y = 0.2934 - 0.0178 x
S r g _ g RC?
§ 020 y=103x"+0.013 g - ~200fs { *'JE } T
g ¥ 2 % IFWHM
© 010 | | L oz [ ) ~300fs }"'-{.___f'4C)Of5
a o N
e S :
0.00 W= | | 0.27
0 0.05 0.1 0.15 0.2 -1 -0.5 0 0.5 1
Charge (nC) S-band RF phase from FEL condition (degree)
Error bar: STD of
« CSRintensity at BC2 was plotted. fluctuation
. Charge dependence P(A)~P,(2)(N, + N,*F(2))
— CSRintensity is proportional to the square S-Band Acc
of the beam charge. i
« Bunch length dependence = a BC2
— S-band phase was shifted to change the bunch length. ‘1'
« Bunch length ~ 300 fs (FWHM) in the XFEL condition CSR

« Phase shift 1deg. - Bunch length change ~ 100 fs

 Sufficient sensitivity to the bunch length.

Oct. 1st, 2012
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78 Streak Camera

SACLA

« OTR light s transported to the klystron
gallery and detected by FESCA-200 streak
camera (Hamamatsu).

 For bunch length = 300 fs (FWHM)

Accelerator Tunnel Klystron Galler
unnel ¢ 5\ K y

—

Ne—>| FESCA-200
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SACLA

0.542 ps (FWHM)

Fraar s

0.308 ps (FWHM)

PR SR RS S-band |c§)hase +9 degrees

XFEL lasing condition

0.913 ps (FWHM)

B (S-band phase 0 degree) : |
BC2 BC3 2 -
_(S-ba;\(d ACMC'ba&\d ACHC@Q' : S-band phaise +13 degrees
ypass : -
e Bunch length at BC2 was measured. ggr(?\%iﬁa m 1 : m—

« BC3 was bypassed.

« S-band phase was shifted to change the 5. "
bunch length. I

« Each figure shows 50-shot integrated image. =juu

» Bunchlength of < 1 ps (FWHM) was obtained. =} S-band phase +17 degrees

1.42 ps (FWHM)




7~ C-band Transverse Deflecting Cavity

[
SACLA RIKEN
< ~4m S < ~10m S
/7\ YAG:Ce Screen
Eeam YTy - LT 1 Te
— » |{ || A }_ E
4 T T e e
T Coherent OTR L
Transverse RF Electric Field Mask \

CcD [

Electron bunch is pitched by transverse RF field.
RAcetrack-shaped Iris-coupling DEflectioN structure (RAIDEN)

— To separate x- and y-mode

— H.Ego et al.,, “Transverse C-band Deflecting Structure for Longitudinal Phase
Space Diagnostics in the XFEL/SPring-8 “SACLA”, Proceedings of IPAC'11.

« Resonant Frequency: 5712 MHz
— To obtain higher kick voltage
— To fully utilize the C-band accelerator resource

« Backward traveling wave of HEM11-5 71 /6 mode
« Deflecting voltage: 60 MV
— When 1.7m x 2 cavities are driven by 50 MW Klystron.
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7~ Performance of RF Deflector R

rRIM=N

Deflector C

Stray li
of COT

« Temporal structure of a 1.4 GeV beam was stretched to
50 fs/mm at 10 m downstream of the deflector cavity.
« Resolution: ~ 10 fs

* YAG:Ce and OTR mask are used in the profile monitor.
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SACLA

E-t Phase-space Measurement R

rRIM=N

10 m downstreagh of RFDEF After switching magnet
t

t

Alignment Additional beamline

undylator 1 yacuum Undulator 18 units  xrg|
; T - | —_—
CSR CSR CSR
Streak Camera Dump
0.5 MeV 30 MeV 0.4 GeV 1.4 GeV 8 GeV oo
1A 1ns 50A, 3 ps 0.6 kA, 300 fs 3KkA, 30 s 3kA, 30 fs

Om 20m 70m 140 m 400 m




=
ﬁﬁ?
=0

Summary

RF Cavity BPM
— Position resolution: 0.6 um
Multi-stripline BPM
— Sufficient sensitivity to the energy measurement at BC
Beam Profile Monitor
— C-OTR was observed after BC3.
— C-OTR was mitigated by YAG:Ce screen with a spatial separation method.
— 1 mm mrad emittance was successfully measured.
Fast Differential Current Transformer
— Rise time: 0.2 ns
— Bunch length measurement around 500 ps.
CTR and CSR Monitor
— Sufficient sensitivity to the bunch length
Streak Camera
— 300 fs (FWHM) bunch length was measured
C-band Transverse RF Deflecting Cavity
— Temporal structure measurement with 10 fs resolution
— E-t phase space can be measured
By using these instruments, X-ray lasing was achieved at SACLA.
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3@’ Demanded spatial and temporal resolution to beam @

° ° @
SACLA monitors & their numbers
= g% %g % g _g § § § g g %gh g-bang;ccgt[erator ljn_vac;JéJm Undulator
SEZSSS S @ a R ) o 222 4mx52units _ m x 18 units
ZEBEEEE 53 Cmxdumts &S amrizinis 35 SEE Aty o i ame e
fle{ldeca - @2 -2 ) CHDDED - -CDEDTHHH T Sns
0.5 MeV 30 MeV 0.4 GeV 1.4 GeV 8 GeV it
1A 1ns 50A,3 Ps 0.6 kA, 300 fs 3 kA, 30fs 3kA, 30 fs with a few undulators Durnp
Om 20m 70m 140 m 400 m 600 m
[ Il | | I J
PRM: 8 RF-BPM: 7 RF-BPM: 7 RF-BPM: 13 RF-BPM: 29
CT:8 PRM: 5 PRM: 5 PRM: 5 PRM: 20
CT:3 CT:4 CT: 4 CT:11
Kinds of Monitor Number
RF cavity BPM 57 To keep stable lasing, the beam
Multi-stripline BPM 4 monitors must measure a spatial
Screen Monitor 43 resolution of less than 1 mm for
Differential Current Transformer 30 the undulator section, a 30 fs
Transverse rf Deflector 1 beam pulse width, and a beam
Streak Camera by using OTR 3 arrival time of less than 30 fs
EO Sampling 1 after the BCs.
Waveguide Spectrometer 475 '
: SPring.. 8
CSR Pyro—detector v | S ﬂ C L, H 4 @
\ 4 RIMZN
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&, Detection Principle of RF-BPM__ £

SACLA

« TM110 dipole resonant mode of a pillbox cavity

E. = Ej J1<X11T) cos ¢ el
a

— E-field is linear around the axis
« Output voltage

V = Vigz + jVaga' + jV3q +Vn

T

Position signal Slope signal Leakage ofTMO“IO mode
In-phase Quadrature-phase Quadrature-phase

* Need to discriminate in-phase component from
guadrature.
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BPM GUI .

RIMEN

el BPM GUI
Attenuation

2 [ e [ e [ e [ e

—mllwlli- 0B} {10} ) )1 L0 14ETD 150410 160 TD17] g (DU

BC3 CB13-M3 ID01-08 ID10-18

Vertical Position

CB13-M3 BL3-0




7% Imaging System

‘ o _ . N r
AN R 5 rﬂ. : }
Biaphagn}

—— £ ¥
- . vy

S

Synthetic
Silica
Window
Vacuum l Lenses Iris

— q :

—— :-‘._.;ﬁ_ -
Emission

Point Ray tracing simulation
« Custom-made lens system
« Variable magnification: x1 - x4
— Lens and CCD camera are mounted on a motorized stage
— X1 optics: Beam finding
— X4 optics: Precise measurement

CCD

=
ﬁi?
=0

Oct. 1st, 2012
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SACLA

7 Spatial Resolution

» Spatial resolution of the imaging system

was measured by using a gri

pattern.

distortion

 Spatial resolution: 2.5 um (HWHM)

— X4 optics

— Consistent with lens si

Intensity [Arb./pel]

 y A’
Grid distortion pattern

Oct. 1st, 2012

ulation

400 Pe———Tr—rrrr—rr——rr———r———r—
| —xIntensity —Differential ]

of
-600 -400 -200 0 200 400 600
Vertical Position on CCD [um]

20

—
o

Differential [Arb./pel/um]

=
=
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.« For frame

AW

<«—For screen

 Thin stainless steel foil

— Thickness: 0.1 mm

— To reduce radiation damage of other components.
« Tmm-thick frame to support the foil

— Ten 0.1 mm thick foils are stacked and unified by a
diffusion bonding technique.

 Surface roughness: several 10 nm
* Flatness: 3 um
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SACLA

7~ Mitigation of Coherent OTR R

Scintillation
04\ - = ~ -
& ~

Vi | o>
YAG:Ce -~ _ _/{ -~ D
Screen Coherent OTR T

t0.Tmm %1 Mask  Lens
(an]

« Target was changed to YAG:Ce
— C-OTR was still observed from YAG:Ce
— Scintillation of the YAG:Ce has no

directional dependence. Squeezew -

« OTR mask |
& mm width Masked area

— OTRis emitted forward within ~5 mm
~1/y radian. S

« C-OTR problem was mitigated by
YAG:Ce and OTR mask.

« Details are presented later

Scintillation| COTR
— MOCCO04 by S. Matsubara | e 3




&, Perforated Mirror for COTR reduction £

~«— Coherent OTR

®3mm / —- S~

Perforated T
Mirror/! - _ =T
YAG:Ce Iy S VA b
Screen ¢ Lens
t0.1mm g Scintillation

YAG:Ce with

Perforated Mirror
attered light
m hole edge

Beam Image C-OTR

Beam near the hole edge

« C-OTRfrom the YAG screen is discarded through a hole in the mirror.
« Only scintillation light is reflected by the perforated mirror.
« When the beam is near the hole edge, C-OTR can be observed.



7~ Common-mode Noise Reduction #

SACLA

File Conbtrol Setup Measure  Analyze  Utllitles  Help 1216 P

'L/Beam S|gnal

Common-mode Noise from klyst
v Top port (positive)

NN WQ

Remalnder

J1

TmV/div, 10us/di

- k * , ¥
E!

2t | i

« Common-mode noise was reduced to 1/10.



g CT GUI .

SACLA RIMEHN

Wfel CT GUI |2

File Attenuation 2012/06/22 16:16:51 Help AODA

EL1
F-F

(1 BC3 EFCH -
3 gbi76 g 5105210 N lE1 0 (563, 4 R 51,0 53 oo 055, 6 57 el B9, 101011, 19 613, 14 fPB 15, 16 517, 13 | Al [ SU [t 1D01glT002-05 f1006-09 [lID10-13 101417 [ID1ElbIMP

w il

0.2 |




4 Fast Gate CCD to Remove C-OTR £

rRIM=N

C-OTR is prompt radiation.

Decay time of YAG:Ce scintillation is ~ 70ns.
Fast gated CCD camera can distinguish them.
~ 1 ns resolution. (but very expensive::-)

First developed at FLASH

M. Yan et al., “Beam Profile Measurements Using a
Fast Gated CCD Camera and Scintillation Screento
(Szu(ﬂp{)ess COTR”, Proceedings of FEL 11, THPB16

Phospher _. ]
Photocathode ~ MCP Screen  Fiber optics

“Oct. 1st, 2012 20
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Fast Gate CCD Data

rRIM=N
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SACLA

Low-level RF Measurements

Measured with a 7-cell model.

Pass band
— Y-mode is clearly separated from x-mode.

e Shuntimpedance

— Bead perturbation

measurement

— Simulation: 13.9 MQ/m
— Measurement: 13.7 MQ/m

[ + - y-mode o— ¥-mode
6300 : 6200
- Simulation
Eﬂ[]: —— X_mode 6100
s - = 6000
Z. 6000}
> | Y-mode 5900
& 5900f . |
S : S 5800
= 5800} o
5712 MHz . 00
5700 F >
EE{]U PRI T R S S U R S R SR S T |¢.5.T.c 6 5600
0 0.2 0.4 0.6 0.8 1
"Oct. 1st, 2012 pD [/l 51
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‘Measurement

\‘\x‘\x‘;‘mgdf

\‘Y’-mode

\\-\-\.

0 1/6 1/3 1/2 2/3 5/6 1



«“ﬁ/ Beam Arrival Time Jitter observed by the RF Deflector R

5/26/2011" = —— R
10 : 5 >
9
8
>_
O 7
pd
Wl 6
8 5 L 53 fs/mm
LLJ
= 4 H
3 = | s
2 NIRRT . 1
1 PR | | e
0

1pps
2N 05 8 0 %, 2 058, V5 6,90 D 28505098 %2 9055 00 20 0.5
L5 700 Y <9 09 O 75 L8 27 Q' 00 7 2 Z8 7 SR T S8 6 28 59 0,2, ~
Co~0%9 %% 9% 5T 5 s5 s 6 6766272 @ @ 99 0 T 1 45 GeV

VERTICAL POSITION[um]

HISTOGRAM OF VERTICAL POSITION, 100 shots
436.81[um, STD] = 22.7 fs, 53 fs/mm
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g

Parameters of RAIDEN Cavity

@
SACLA RIKEN
Total Deflecting Voltage V., 60 MV
RF deflecting phase 0, 0 degree #1 #2
Fractional bunch length for X- | ¢, 200 fs Operation frequency [MHz] Ja 712
ray oscillation Resonant mode HEM11-57/6
Beam energy at the deflector - C 1.45 GeV Unloaded Q 0. 3809 8948
Resonant frequency fa 5712 MHz Group velocity ve/c -0.0213  -0.0213
Type of structure CcZ Filling time [ps] T; 0.269 0.269
Resonant mode HEMI1 Attenuation parameter T 0.548 0.539
Phase shift per cell pD 5T/6 rad Transverse shunt impedance r 20.8 21.0
. . , [MQ/m]
Group velocity Ve /c -2.16 %
— VSWR 1.12 1.09
Filling time I; 0.27 s
Maximum accumulation of +7.5 +2.8
Unloaded Q O, 11500 errors in phase-advance [°]
Transverse shunt impedance Zy 27.8 MQ/m
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SACLA

« Race-trackiris
— Made by a precise milling machine
— Electrochemically polished
— Surface roughness: 1 um pk-pk

e Other part

— Machined by a precise lathe with a diamond
bit
— Roughness < 1 um pk-pk
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7~ Waveform of CSR Monitor

SACLA
. BC1: Schotkky Didode Detector
S
£ O
5
&
3 5
=
o
2 10
L%
(=]
-15 1 I 1
-0.05 0 0.05 0.1 0.15

Time us

utput (V)

toro

Detec

2

15 |

1

0.5

0

-0.5

BC3: Pyro-electric Detector

P

-5 0 5 10 15 20 25 30

Time (ms)

« THz diode detector: ~10 ns
* Pyroelectric detector: ~10 ms

Oct. 1st, 2012
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&~ Electron Beam Timing Plck-up using EO Crystal %

SHCLH RIfiz

Timing pick—up
ZnTe electro—optical crystal

By Dr. Tamasaku

Timing imager
BBO crsytal
800 nm—>400 nm

. s ] ; . _
Polarlzer - " L .
E :!!f_ ” ”
) il [ : Pulse ~stretcher
o 3 S £ “
g /) ; ..'I

Beam

Electric Field E

Disk Shape |
Optical delay

Electric Magnetic Field of

Relativistic Electron Beam 110 fs Ti:Sapphire
Magnetic Field B
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g EO Sampling Results R

SACLA RIKEN

Probe pulse Courtesy of K. Tamasaku and T. Togashi
~ Gate pulse

10ps

- ~100fs

BBO

« ~100 fs resolution is expected
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SACLA

g Halo Monitor

Al electrode (bias voltage) a0,

\ \
Al electrode (signal) \b
CVD diamond plate N
N\ 26 mm
Active area
5mm2 |, sl
Tl
%Ge\‘\oe'a“\ ,b,b >/(°
o 03"
e\e

« Toreduce the demagnetization of the undulator magnet.
— Undulator magnet can be damaged by beam halo.

« Diamond detector is employed.
— Sensitivity: 10 fC (10-14C)

* Installed into the upstream of the undulator beamline.
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&~ Electronics of the Halo Monitor

rRIM=N

Diamond Detectors Halo Monitor Amp Event-synchronized
in Halo Monitor (differential output) Data-acquisition System
(+) ADC
Upper blade [———>—2| ch 1 ch 1 .{.}..---ZI ch1
= Data Base
(+)
Lower blade }—3‘ ch?2 ch2 [T ch 2
¢ 233 MSisec ( 4. 2nsec period )
VME 0— 2047 ch { ~ 8usec )
25HHIIHIIHHIH‘I”HIHHIHH‘H”_ 08 L A L L L i o ey Py sy —
_ ] ] 06l _ spa_non_hn_1_upper. Fuaveforn ——
g % S o4 S _
g 151 g -l g Signal from upper blade
. = 02 L : aaaaaa .
z 5 12 02 1 £ _
o 1 © {05 s i Signal from lower |
S s |3 WWWM’W%WM
0r ] O o6l I i !
P20 1 2 s 4 5 8 % o TR 0 150 20 e e
Time (nsec) Time (nsec) Time (210nsec/div)
(a) The output signal from (b) The output signal (C) The waveform stored
the diamond detector from the pre-amplifier. at data base.
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rRIM=N

4 Optical Fiber Beam Loss Monitor £

> electron beam
stray electrotl,,

vacuum chamber F R~
Photo detector = D Photo detector
Cherenkov or scintillation Iighw‘_ fiber
« Scattered electrons emit Cherenkov radiation in an optical

fiber.
« The Cherenkov light is detected by a photo-multiplier tube.
 Signal intensity > Amount of beam loss (1pC sensitivity)
 Signal timing > Position of beam loss

Undulator Hall

M BL3 UR
ADC > < :_.
= o
D.B. (waveform) Control room =]
BL3 DL
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/J/ Electronics of Beam Loss Monitor

[0 Beam|lo=|initor; e

BESRATFAA B IP s M
Y
3
‘ \ ]
— < { k‘J\ rf 1‘1
— a' :
PMT: Hamamatsu H6780-02 ‘“Z:’rﬂ.'.“m"'...m...m...m...1 =
with FC connector e
o = - e
i éim-‘
ol Tl
ADC: CAEN V1729A Switched-Capacitor Digitizer mmmmm
4 Channel, 14 bit, 2 GS/s (300 MHz bandwidth)
1 !"'!"'!"'!"'\“'_
« Waveform is recorded by a VME
AD board t
« Beam loss is plotted as a function =1 W
of the position. SR
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MADOCA

MADOCA software framework

@UD"DD Console WS EDél vaaéj rEiEE Logging

s0msec database

for BT
assage
ser\rerg | Syhasn Parameter
"1 database
Surveillance, disp, voice \
#Eﬁ%%s Alarm
Collector database
=+ (ONC/RPC

+ RF, Mag
| 1 J"I
(T,
Equipment Gojector & SQL data access
mManager oller
EM translates logical objects to/from

I VME systems '.' physical devices
devices devices . .
Client/server architecture

System V IPC

Oct. 1st, 2012



/\7/ Event Synchronized Data Acquisition 3

EventBuilder |g

/ Workstation |2
MySQL \
D ty bQ Shared-memory network
atapase VR — ME

SEEE ggﬂz@g = e
e SI=[elE ‘ G EEE
UME VME
\ ) L H
Vreedback [ gpwm, c7 BPM, T < feedback | [photon|
Monitor
—[}&mmuxww : H\H/H-F |
Gun SHB Booster S-band Bunch C-band Chicane Undulators Dum

Compressor

« VME reflective memory board is used.

In each VME crate, trigger number is counted and
the data is synchronized by using this number.

MySQL database is used.
« Capable of 60 Hz operation
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Image Data Acquisition

SACLA RIMEHN
xel_mon_img
Filg Ha:l:g'nund Camera T Pl
~ Screen Insert
Camera Selection ...
Gan Gain Settih_!g 1*::.-:.|m|.|-1-r.“. Comment Record / Stop "
b‘l.:e .. [E¥GSLICE 15 .s.elec'e-:]. . o - o . S
I — Il = D D Marking Clear | = | | Cantar Cne Shat Recerd | Status: -

CameralLink
Selector

Driver Driver
Vv V
CameraLink Cother
XFEL?‘ﬁIJf?dli-Ef%&—/{{T ils
— U
xfimg-xcr Trlgger
CCD camera

« Image data is stored in a NFS storage and image tag information is recorded by

MySQL.

« Realtime image is monitored by a GUI
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