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Outline 
• Introduction 

– Current status of SACLA 
• Design and Performance of Beam Diagnostic 

Instruments and their application for beam 
commissioning 
– RF-BPM and Multi-Strpline BPM 
– Screen monitor (OTR, YAG:Ce, Desmarquest) 
– Fast differential CT 
– Coherent radiation monitor to estimate the 

bunch length 
– Streak Camera 
– C-band Transverse deflector cavity 

• Summary 
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Introduction 

• SACLA 
– SPring-8 Angstrom Compact Free Electron Laser 
– XFEL is generated by Self-Amplified Spontaneous Emission (SASE)  

• 8 GeV Linac and in-vacuum undulator beamline 
– CeB6 thermionic electron gun (500 kV, εn: 0.6 mm mrad) 
– Velocity bunching and 3 bunch compressors to achieve > 3 kA peak current 
– C-band high-gradient accelerator (> 35 MV/m) 
– Short period in-vacuum undulator (λu : 18 mm) 
– Total facility length is 700 m. 

• We started beam commissioning in March 2011 and observed the first 
XFEL radiation in June 2011. 

• Public user experiments have been performed since March 2012. 
– Photon Energy: 5 – 15 keV 
– Wavelength: 0.08 – 0.25 nm 
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XFEL Spectrum and Profile 

K=1.8 
E=7 GeV 

Transverse Profile 

~ 0.5mm 

Narrow band width and 
high brightness 
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XFEL Gain Curve 

• Nonlinear amplification 
• Large power fluctuation in the amplification stage 
• Small power fluctuation after the saturation 

○ 
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XFEL Intensity Stability (24 hrs.) 

• Photon energy: 10 keV (Wavelength 0.124 nm) 
• Electron beam energy: 7.8 GeV 
• Bunch Charge: 0.2 nC 
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Beam Diagnostic System 
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• RF cavity BPM (RF-BPM) with position resolution < 1 μm. 
– Electron beam must be overlapped with x-rays within 4μm in the undulator section. 

• Multi-stripline BPM for dispersive part to monitor the beam energy 
• Screen monitor (SCM) with less than 10 μm resolution. 

– Transverse beam profile measurement, emittance measurement etc. 
– OTR, YAG:Ce or Desmarquest screen with high-resolution imaging system. 

• Fast differential current transformer (CT) 
– Bunch length measurement in the injector part 
– Bunch charge monitor without common-mode noise. 

• Coherent radiation monitors 
– Coherent transition radiation (CTR) and coherent synchrotron radiation (CSR) monitor 

• Streak Camera  
– Resolution: 300 fs  

• C-band transverse RF deflector cavity system (RFDEF) 
– Resolution: 10 fs.  
– Bunch length is compressed to 30 fs. 



RF Cavity BPM 

• TM110 dipole mode of Beam-induced RF field is used. 
 

• TM010 cavity determines the phase reference and the beam charge. 
 
– Beam arrival timing can be measured. 

• Resonant frequency：4.760 GHz (C-band) 
• H. Maesaka et al., Nucl. Intrum. Meth. A 696, 66 (2012). 
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RF-BPM Electronics 

• IQ demodulator to obtain amplitude and phase 
• Attenuator switch extends the dynamic range to 

100 dB 
– From sub-μm to a few mm 

• Baseband signals are recorded by a 12-bit or 16-bit 
VME waveform digitizer. 
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Position Resolution of RF-BPM 

• Position resolution was analyzed for 20 RF-BPMs in the undulator section 
• Estimated position at a given RF-BPM was estimated from the other BPMs. 
• Measurement and estimation were almost same. (left plot) 
• Resolution is defined as the rms of the difference between the measurement 

and the estimation. 
• Position resolution  < 0.6 μm (rms)  (right plot) 

– 7 GeV,  0.1 nC 
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Beam Trajectory Monitored by RF-BPM 
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Single-shot beam trajectory 

Data 

Estimated trajectory Estimated trajectory 
Data 
Estimated trajectory 
Data 
Estimated trajectory 
Data 
Estimated trajectory 
Data 



Correlation between Beam position and XFEL intensity 

• Correlation between the beam position (x,y-axes) and FEL 
intensity (z-axis) 

• Easy to see what trajectory is the best. 
• Injection orbit is locked to the best point by a feedback control. 
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Orbit Correction for Variable Gap Undulators 
• RF-BPM data is used for the orbit correction for 

different undulator gap. 
– Beam orbit is corrected by steering magnets between 

undulators 
– Feed-forward table of steering magnets is prepared. 

• Orbit reproducibility is within 10 μm. 
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Beam Arrival Timing Resolution 
• Beam arrival timing can be measured by the phase of 

the reference cavity (TM010). 
– Useful to monitor the timing drift of the machine 
– Experimental users can use this timing data 

• Required temporal resolution: < 50 fs 
• Arrival timing resolution: 27 fs (STD) 

– Measured by the reference cavities of two neighboring 
BPMs in the SCSS test accelerator. 
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Phase Difference of 
TM010 cavities 

Sigma: 
27 fs 
(0.046 deg. 
 of 4760 MHz) 



Trend of the Beam Arrival Timing 

• Drift of the arrival timing is appropriately obtained. 
• Large drift is due to the rf phase drift in the injector section. 
• Time difference between the entrance and the exit of the 

undulator beamline is caused by the drift of the reference timing 
transmission line due to the ambient temperature drift. 
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Multi-stripline BPM 

• Multi-stripline BPM is used at the dispersive part of a bunch compressor (BC), 
because the horizontal beam size is large. 

• Beam position at BC is important for monitoring the beam energy. 
– 0.1 mm sensitivity is required for the beam energy measurement less than 0.1% resolution. 

• Five stripline electrodes are equipped for each of top and bottom plane of the 
rectangular beam duct. 

– Characteristic impedance: 50 ohm 
– Stripline length: λ/4  of 476 MHz 
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Electronics for Multi-stripline BPM 

• Impulse signal from the stripline electrode is converted to a wave 
packet of an rf signal by using a band-pass filter. 

• Five signals are combined into one line by means of the group 
delay of other band-pass filters and rf power combiners. 

• The rf signal is detected by an IQ demodulator and the baseband 
waveforms are recorded by VME waveform digitizer. 

• Beam position is evaluated from the center of mass of the peak 
voltages of the pulse signals. 
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Arrival timing, beam energy and XFEL intensity 
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Trend graphs of the XFEL 
intensity, arrival timing 
and beam energy 

Correlation plots with 
XFEL intensity 



Screen Monitor 
• OTR (stainless steel foil), YAG:Ce scintillator 

and Desmarquest targets were employed. 
– Target is mounted on a shaft driven by a 

pneumatic actuator. 
• Custom-made lens system. 

– Some of the profile monitors are equipped 
with remote zoom system (x1 – x4). 

• Resolution: 2 μm (x4 optics) 
• Images are taken by a CCD camera and 

transferred by CameraLink. 
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Beam Profiles before BC3 
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238MHz Exit 
~0.4 MeV 

5 mm 

~30 MeV 

5 mm 

Desmarquest 

Desmarquest 

BC1 Exit 
~30 MeV 

5 mm 

YAG:Ce 
(t0.1mm) 

~400 MeV 

5 mm 

OTR 

BC3 Entrance 
~1400 MeV 

5 mm 

OTR 

L-band Exit BC2 Exit 

CB01 Exit 
~800 MeV 

5 mm 

OTR 



Coherent OTR after BC3 

• Intense coherent OTR was observed after BC3 
– Bunch length < 100 fs 
– Stainless steel screen 

• Target was changed to YAG:Ce 
– But, C-OTR was still observed from YAG:Ce 

 Oct. 1st, 2012 21 

Intense C-OTR Ring-shaped C-OTR 



Mitigation of C-OTR Problem 

• OTR is emitted forward within ~1/γ radian.  
• Scintillation of the YAG:Ce has no directional dependence. 
• An OTR mask and a perforated mirror were tried to mitigate the C-OTR problem. 
• C-OTR from the YAG screen is removed from the mask or the hole on the mirror. 
• Details will be presented later 

– MOCC04 by S. Matsubara 
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YAG:Ce with OTR mask 
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t0.1mm 

図減らす 

t0.1mm 

φ3mm 

YAG:Ce with  
Perforated Mirror 

3 mm 

Scattered light 
from hole edge 



Comparison between RF-BPM and Screen Monitor 

• Beam position from an RF-BPM is consistent with that from the 
adjacent screen monitor. 
– Even if the beam energy, profile were changed. 
– Error: < 10 μm (STD) 
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Emittance Measurement 
• Q-scanning method 
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Normalized vertical emittance: 1.09 mm mrad after BC3 (1.4 GeV) 

σ~ 30 μm 
(Minimum)  

𝜎𝑥2 = 𝛽𝛽 𝐿𝑙𝑄𝐾 + 𝛼𝐿/𝛽 − 1 2 + 𝜀𝐿2/𝛽 
Beam Screen  

Monitor 
L lQ, K 

YAG:Ce with OTR mask 
(t0.1mm) 



Fast Differential Current Transformer 

• 2 positive ports and 2 negative ports 
• Oppositely coiled. 
• Common-mode noise can be subtracted. 
• Rise time: ~ 200 ps  (10 – 90 %) 
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CT Data 

• Bunch length in the velocity bunching region can 
be measured by using raw signals from the CT. 

• Bunch length: 400 ps (FWHM) minimum. 
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SHB

Beam
chopper CT-238

476 MHz
booster

CT-476

Accelerating voltages of 
238MHz sub-harmonic 
buncher cavity was 
scanned. 



Antenna 
RF Detector 

To A/D Converter 

Rectangular 
Waveguide 

CTR Monitor 

• Coherent transition radiation from a fluorescent screen is 
detected. 

• By using a cut off of a rectangular waveguide, this works as a 
single-shot spectrometer. 

• In the injector part, about 10 GHz rf signal is obtained. 
– Bunch length ~ 100 ps 
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CTR Monitor Data 

• The signal strength has a correlation with 
the bunch length. 
– Consistent with 1D simulation 
– Amplitude and phase of the sub-harmonic 

cavities can be determined 
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Accelerating voltages of 238MHz sub-harmonic 
buncher cavity was scanned. 
(476 MHz booster was turned off.) 



CSR Monitor 
• CSR (Coherent Synchrotron Radiation) 

spectrum has a strong correlation with 
bunch length. 

• CSR intensity was measured by a THz 
detector non-invasively. 

• Pyro-electric detector or THz diode 
• CSR from the 4th bending magnet of 

each bunch compressor is monitored. 
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CSR Data 

• CSR intensity at BC2 was plotted. 
• Charge dependence 

– CSR intensity is proportional to the square  
of the beam charge. 

• Bunch length dependence 
– S-band phase was shifted to change the bunch length. 

• Bunch length ~ 300 fs (FWHM) in the XFEL condition 
• Phase shift 1deg.  Bunch length change ~ 100  fs 
• Sufficient sensitivity to the bunch length. 
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CSR intensity v.s. Bunch length CSR intensity v.s. Charge 

BC2 

Error bar: STD of 
fluctuation 

~200fs 
(FWHM) 

~300fs ~400fs 

S-Band Acc. 
BC2 

CSR 

𝑷 𝝀 ~𝑷𝒆 𝝀 𝑵𝒆 + 𝑵𝒆
𝟐𝑭 𝝀  



Streak Camera 
• OTR light is transported to the klystron 

gallery and detected by FESCA-200 streak 
camera (Hamamatsu). 

• For bunch length ≳ 300 fs (FWHM) 
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Streak Camera Data 

• Bunch length at BC2 was measured. 
• BC3 was bypassed. 
• S-band phase was shifted to change the 

bunch length. 
• Each figure shows 50-shot integrated image. 
• Bunch length of < 1 ps (FWHM) was obtained. 
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C-band Transverse Deflecting Cavity 

• Electron bunch is pitched by transverse RF field. 
• RAcetrack-shaped Iris-coupling DEflectioN structure (RAIDEN) 

– To separate x- and y-mode 
– H. Ego et al., “Transverse C-band Deflecting Structure for Longitudinal Phase  

Space Diagnostics in the XFEL/SPring-8 “SACLA”, Proceedings of IPAC’11. 
• Resonant Frequency: 5712 MHz 

– To obtain higher kick voltage 
– To fully utilize the C-band accelerator resource 

• Backward traveling wave of HEM11-5π/6 mode 
• Deflecting voltage: 60 MV 

– When 1.7m x 2 cavities are driven by 50 MW klystron. 
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~10m ~4m 



Performance of RF Deflector 

• Temporal structure of a 1.4 GeV beam was stretched to 
50 fs/mm at 10 m downstream of the deflector cavity. 

• Resolution: ~ 10 fs 
• YAG:Ce and OTR mask are used in the profile monitor. 
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E-t Phase-space Measurement 
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Summary 
• RF Cavity BPM 

– Position resolution: 0.6 μm 
• Multi-stripline BPM 

– Sufficient sensitivity to the energy measurement at BC 
• Beam Profile Monitor 

– C-OTR was observed after BC3. 
– C-OTR was mitigated by YAG:Ce screen with a spatial separation method. 
– 1 mm mrad emittance was successfully measured. 

• Fast Differential Current Transformer 
– Rise time: 0.2 ns 
– Bunch length measurement around 500 ps. 

• CTR and CSR Monitor 
– Sufficient sensitivity to the bunch length 

• Streak Camera 
– 300 fs (FWHM) bunch length was measured 

• C-band Transverse RF Deflecting Cavity 
– Temporal structure measurement with 10 fs resolution 
– E-t phase space can be measured 

• By using these instruments, X-ray lasing was achieved at SACLA. 
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Demanded spatial and temporal resolution to beam 
monitors & their numbers 
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Kinds of  Monitor Number 

RF cavity BPM 57 

Multi-stripline BPM 4 

Screen Monitor 43 

Differential Current Transformer 30 

Transverse rf Deflector 1 

Streak Camera by using OTR 3 

EO Sampling 1 

Waveguide Spectrometer 4 ~ 5 

CSR Pyro-detector 3 

 To keep stable lasing, the beam 
monitors must measure a spatial 
resolution of less than 1 mm for 
the undulator section,  a 30 fs 
beam pulse width, and a beam 
arrival time of less than 30 fs 
after the BCs. 



Detection Principle of RF-BPM 
• TM110 dipole resonant mode of a pillbox cavity 

 
 
 

– E-field is linear around the axis 
• Output voltage 

 
 
 
 

• Need to discriminate in-phase component from 
quadrature. 
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BPM GUI 
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Imaging System 

• Custom-made lens system 
• Variable magnification: x1 – x4 

– Lens and CCD camera are mounted on a motorized stage 
– x1 optics: Beam finding 
– x4 optics: Precise measurement 
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Ray tracing simulation 



Spatial Resolution 
• Spatial resolution of the imaging system 

was measured by using a grid distortion 
pattern. 

• Spatial resolution: 2.5 µm (HWHM) 
– x4 optics 
– Consistent with lens simulation 
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Grid distortion pattern 



OTR Target 

• Thin stainless steel foil 
– Thickness: 0.1 mm 
– To reduce radiation damage of other components. 

• 1mm-thick frame to support the foil 
– Ten 0.1 mm thick foils are stacked and unified by a 

diffusion bonding technique. 
• Surface roughness: several 10 nm 
• Flatness: 3 µm 
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For screen 
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Mitigation of Coherent OTR 

• Target was changed to YAG:Ce 
– C-OTR was still observed from YAG:Ce 
– Scintillation of the YAG:Ce has no 

directional dependence. 
• OTR mask 

– 5 mm width 
– OTR is emitted forward within  

~1/γ radian.  
• C-OTR problem was mitigated by 

YAG:Ce and OTR mask. 
• Details are presented later 

– MOCC04 by S. Matsubara 
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Perforated Mirror for COTR reduction 

• C-OTR from the YAG screen is discarded through a hole in the mirror. 
• Only scintillation light is reflected by the perforated mirror. 
• When the beam is near the hole edge, C-OTR can be observed. 
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YAG:Ce with  
Perforated Mirror 

3 mm 

Scattered light 
from hole edge 

Beam near the hole edge 

C-OTR Beam Image 

t0.1mm 

φ3mm 



Common-mode Noise Reduction 

• Common-mode noise was reduced to 1/10. 
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1mV/div, 10µs/div 

Bottom port (negative) 
Remainder 

Beam signal 
Common-mode Noise from klystrons 



CT GUI 
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Fast Gate CCD to Remove C-OTR 
• C-OTR is prompt radiation. 
• Decay time of YAG:Ce scintillation is ~ 70ns. 
• Fast gated CCD camera can distinguish them. 
• ~ 1 ns resolution. (but very expensive…) 
• First developed at FLASH 
• M. Yan et al., “Beam Profile Measurements Using a 

Fast Gated CCD Camera and Scintillation Screen to 
Suppress COTR”, Proceedings of FEL 11, THPB16 
(2011). 
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Fast Gate CCD Data 
 

Oct. 1st, 2012 50 



Low-level RF Measurements 

5712 MHz 

• Measured with a 7-cell model. 
• Pass band 

– Y-mode is clearly separated from x-mode. 
• Shunt impedance 

– Bead perturbation measurement 
– Simulation: 13.9 MΩ/m 
– Measurement: 13.7 MΩ/m 

X-mode 

Y-mode 

5π/6 
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Beam Arrival Time Jitter observed by the RF Deflector 
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Parameters of RAIDEN Cavity 
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Machining of the Cell 
• Race-track iris 

– Made by a precise milling machine 
– Electrochemically polished 
– Surface roughness: 1 µm pk-pk 

• Other part 
– Machined by a precise lathe with a diamond 

bit 
– Roughness < 1 µm pk-pk 
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Waveform of CSR Monitor 

• THz diode detector: ~10 ns 
• Pyroelectric detector: ~10 ms 
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Grating 1 

Grating 2 

Pulse "stretcher" 

~10 ps
Optical delay 

Timing imager 
BBO crsytal 
800 nm->400 nm 

Timing pick-up 
ZnTe electro-optical crystal 

polarizer 

 /2 

 /4 
analyzer 

 /2 

110 fs Ti:Sapphire 

Beam 

Magnetic Field B 

Electric Field E 

Electric Magnetic Field of 
Relativistic Electron Beam 

Disk Shape 

By Dr. Tamasaku 

Electron Beam Timing Pick-up using EO Crystal 
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EO Sampling Results 

• ~100 fs resolution is expected 
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Courtesy of K. Tamasaku and T. Togashi 



Halo Monitor 

• To reduce the demagnetization of the undulator magnet. 
– Undulator magnet can be damaged by beam halo. 

• Diamond detector is employed. 
– Sensitivity: 10 fC (10–14 C) 

• Installed into the upstream of the undulator beamline. 
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Electronics of the Halo Monitor 
 

59 

Signal from upper blade 

Signal from lower 
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(a) The output signal from 
the diamond detector 

(b)  The output signal 
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(C) The waveform stored 
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Optical Fiber Beam Loss Monitor 

• Scattered electrons emit Cherenkov radiation in an optical 
fiber. 

• The Cherenkov light is detected by a photo-multiplier tube. 
• Signal intensity  Amount of beam loss (1pC sensitivity) 
• Signal timing  Position of beam loss 
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Electronics of Beam Loss Monitor 

• Waveform is recorded by a VME 
AD board 

• Beam loss is plotted as a function 
of the position. 
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MADOCA 
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Event Synchronized Data Acquisition 

• VME reflective memory board is used. 
• In each VME crate, trigger number is counted and 

the data is synchronized by using this number. 
• MySQL database is used. 
• Capable of 60 Hz operation 
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Image tag 

CCD camera 
Trigger 

Image Data Acquisition 

• Image data is stored in a NFS storage and image tag information is recorded by 
MySQL. 

• Realtime image is monitored by a GUI 
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