
Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

Writing Device Support

Kazuro Furukawa
<kazuro.furukawa@kek.jp>

for EPICS2009 at RRCAT

January 30, 2009

Based on presentations by

Eric Norum, 2004

Ralph Lange, 2006

< kazuro.furukawa @ kek.jp >

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

Writing Device Support – Scope

!An overview of the concepts associated with
writing EPICS Device Support routines.

!Examples show the “stone knives and
bearskins” approach.

!The ASYN package provides a framework which
makes writing device support much easier.
"The concepts presented here still apply.

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

Writing Device Support – Outline

!What is ‘Device Support’?

!The .dbd file entry

!The driver DSET

!Device addresses

!Support routines

!Using interrupts

!Asynchronous input/output

!Callbacks

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

What is ‘Device Support’?

!Interface between record and hardware

!A set of routines for record support to call
"The record type determines the required set of routines

"These routines have full read/write access to any
record field

!Determines synchronous/asynchronous nature
of record

!Performs record I/O
"Provides interrupt handling mechanism

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

Why use Device Support?
!Could instead make a different record type for
each hardware interface, with fields to allow full
control over the provided facilities.

!A separate device support level provides several
advantages:
"Users need not learn a new record type for each type of
device

"Increases modularity
#I/O hardware changes are less disruptive

#Device support is simpler than record support

#Hardware interface code is isolated from record API

!Custom records are available if really needed.
"By which I mean “really, really, really needed!”

"Existing record types are sufficient for most applications.

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

How Does a Record Find Its Device Support?

 Through .dbd ‘device’ statements:

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

The .dbd File Entry

!The IOC discovers device support from entries in

.dbd files

device(recType,addrType,dsetName,”dtypeName”)

!addrType is one of
AB_IO BITBUS_IO CAMAC_IO GPIB_IO

INST_IO RF_IO VME_IO VXI_IO

!dsetName is the name of the C Device Support Entry Table

(DSET)

•By convention name indicates record and hardware type:

device(ai, GPIB_IO, devAidg535, "dg535")

device(bi, VME_IO, devBiXy240, "XYCOM-240")

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

The DSET

!A C structure containing pointers to functions

!Content dependent upon record type

!Each device support layer defines a DSET with pointers to its own

functions

!A DSET structure declaration looks like:
struct dset {

long number;
long (*report)(int level);
long (*initialize)(int pass);
long (*initRecord)(struct … *precord);
long (*getIoIntInfo)(…);

… read/write and other routines as required
};

!number specifies number of pointers (often 5 or 6)

!A NULL is given when an optional routine is not implemented

!DSET structures and functions are usually declared static

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

The DSET – initialize

long initialize(int pass);

!Initializes the device support layer

!Optional routine, not always needed

!Used for one-time startup operations:
"Start background tasks

"Create shared tables

!Called twice by iocInit()
"pass=0 – Before any record initialization

#Doesn’t usually access hardware since device address
information is not yet known

"pass=1 – After all record initialization

#Can be used as a final startup step. All device address
information is now known

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

The DSET – initRecord

long initRecord(struct … *precord);

!Called by iocInit() once for each record with
matching DTYP

!Optional routine, but usually supplied

!Routines often
"Validate the INP or OUTP field

"Verify that addressed hardware is present

"Allocate device-specific storage for the record
#Each record contains a void *dpvt pointer for this purpose

"Program device registers

"Set record-specific fields needed for conversion
to/from engineering units

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

The DSET – initRecord – Device Addresses

!Device support .dbd entry was
device(recType,addrType,dset,"name")

!addrType specifies the type to use for the address link, e.g.
device(bo,VME_IO,devBoXy240,"Xycom XY240")

sets pbo->out:
"pbo->out.type = VME_IO

"Device support uses pbo->out.value.vmeio which is a
struct vmeio {
 short card;
 short signal;
 char *parm;
};

!IOC Application Developer’s Guide describes all types

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

The DSET – report

long report(int level);

!Called by dbior shell command

!Prints information about current state,
hardware status, I/O statistics, etc.

!Amount of output is controlled by the level
argument
"level=0 – list hardware connected, one device per line

"level>0 – provide different type or more detailed
information

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

The DSET – read/write

long read(struct … *precord);

long write(struct … *precord);

!Called when record is processed

!Perform (or initiate) the I/O operation:
"Synchronous input
#Copy value from hardware into precord->rval

#Return 0 (to indicate success)

"Synchronous output
#Copy value from precord->rval to hardware

#Return 0 (to indicate success)

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

A Simple Example (VME / vxWorks or RTEMS)
#include <recGbl.h>

#include <devSup.h>

#include <devLib.h>

#include <biRecord.h>

#include <epicsExport.h>

static long initRecord(struct biRecord *prec){

char *pbyte, dummy;

if ((prec->inp.type != VME_IO) ||

 (prec->inp.value.vmeio.signal < 0) || (prec->inp.value.vmeio.signal > 7)) {

recGblRecordError(S_dev_badInpType, (void *)prec, "devBiFirst: Bad INP");

return -1;

}

if (devRegisterAddress("devBiFirst", atVMEA16, prec->inp.value.vmeio.card, 0x1,

&pbyte) != 0) {

recGblRecordError(S_dev_badCard, (void *)prec, "devBiFirst: Bad VME address");

return -1;

}

if (devReadProbe(1, pbyte, &dummy) < 0) {

recGblRecordError(S_dev_badCard, (void *)prec, "devBiFirst: Nothing there!");

return -1;

}

prec->dpvt = pbyte;

prec->mask = 1 << prec->inp.value.vmeio.signal;

return 0;

}

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

A Simple Example (VME / vxWorks or RTEMS)

static long read(struct biRecord *prec)
{

volatile char *pbyte = (volatile char *)prec->dpvt;

prec->rval = *pbyte;
return 0;

}

static struct {
long number;
long (*report)(int);
long (*initialize)(int);
long (*initRecord)(struct biRecord *);
long (*getIoIntInfo)();
long (*read)(struct biRecord *);

} devBiFirst = {
5, NULL, NULL, initRecord, NULL, read

};
epicsExportAddress(dset,devBiFirst);

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

A Simple Example – Device Support .dbd File

The .dbd file for the device support routines shown
on the preceding pages might be

device(bi, VME_IO, devBiFirst, “simpleInput”)

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

A Simple Example – Application .db File

An application .db file using the device
support routines shown on the preceding
pages might contain

record(bi, "$(P):statusBit")
{
 field(DESC, "Simple example binary input")
 field(DTYP, "simpleInput")
 field(INP, "#C$(C) S$(S)")
}

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

A Simple Example – Application Startup Script

An application startup script (st.cmd) using the
device support routines shown on the preceding
pages might contain

dbLoadRecords("db/example.db","P=test,C=0x1E0,S=0")

which would expand the .db file into

record(bi, "test:statusBit")
{
 field(DESC, "Simple example binary input")
 field(DTYP, "simpleInput")
 field(INP, "#C0x1E0 S0")
}

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

Useful Facilities

!ANSI C routines (EPICS headers fill in vendor holes)
"epicsStdio.h – printf, sscanf, epicsSnprintf

"epicsString.h – strcpy, memcpy, epicsStrDup

"epicsStdlib.h –!getenv, abs, epicsScanDouble

!OS-independent hardware access (devLib.h)
"Bus address ! Local address conversion

"Interrupt control

"Bus probing

!EPICS routines
"epicsEvent.h – process synchronization semaphore

"epicsMutex.h – mutual-exclusion semaphore

"epicsThread.h – multithreading support

"recGbl.h – record error and alarm reporting

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

Device Interrupts

!vxWorks/RTEMS interrupt handlers can be
written in C

!VME interrupts have two parameters
" Interrupt level (1-7, but don’t use level 7) – often set

with on-board jumpers or DIP switches

" Interrupt vector (0-255, <64 reserved on MC680x0) –
often set by writing to an on-board register

!OS initialization takes two calls
1. Connect interrupt handler to vector
devConnectInterruptVME(unsigned vectorNumber,

 void (*pFunction)(void *),void *parameter);

2. Enable interrupt from VME to CPU
devEnableInterruptLevelVME (unsigned level);

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

I/O Interrupt Record Processing

!Record is processed when hardware interrupt occurs

!Granularity depends on device support and hardware
"Interrupt per-channel vs. interrupt per-card

!#include <dbScan.h> to get additional declarations

!Call scanIoInit once for each interrupt source to initialize
a local value:
scanIoInit(&ioscanpvt);

!DSET must provide a getIoIntInfo routine to specify the
interrupt source associated with a record – a single interrupt
source can be associated with more than one record

!Interrupt handler calls scanIoRequest with the ‘ioscanpvt’
value for that source – this is one of the very few routines
which may be called from an interrupt handler

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

The DSET – getIoIntInfo

long getIoIntInfo(int cmd, struct … *precord,
 IOSCANPVT *ppvt);

!Set *ppvt to the value of the IOSCANPVT variable for the

interrupt source to be associated with this record

!Must have already called scanIoInit to initialize the

IOSCANPVT variable

!Return 0 to indicate success or non-zero to indicate failure
– in which case the record SCAN field will be set to Passive

!Routine is called with
"(cmd=0) when record is set to SCAN=I/O Intr

"(cmd=1) when record SCAN field is set to any other value

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

The DSET – specialLinconv

long specialLinconv(struct … *precord, int after);

!Analog input (ai) and output (ao) record DSETs include this

sixth routine

!Called just before (after=0) and just after (after=1) the

value of the LINR, EGUL or EGUF fields changes

!“Before” usually does nothing

!“After” recalculates ESLO from EGUL/EGUF and the

hardware range

!If record LINR field is Linear ai record processing will

compute val as

val = ((rval + roff) * aslo + aoff) * eslo + eoff

Ao record processing is similar, but in reverse

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

Asynchronous I/O

!Device support must not wait for slow I/O

!Hardware read/write operations which take “a
long time” to complete must use asynchronous
record processing
"TI/O " 100 µs – definitely “a long time”

"TI/O # 10 µs – definitely “not a long time”

"10 µs < TI/O < 100 µs – ???

!If device does not provide a completion
interrupt a “worker” thread can be created to
perform the I/O
"this technique is used for Ethernet-attached devices

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

Asynchronous I/O – Read/Write Operation

!Check value of precord->pact and!if zero:

"Set precord->pact to 1

"Start the I/O operation
#write hardware or send message to worker thread

"Return 0

!When operation completes run the following code
from a thread (i.e. NOT from an interrupt handler)
struct rset *prset = (struct rset *)precord->rset;
dbScanLock(precord);
(*prset->process)(precord);
dbScanUnlock(precord);

!The record’s process routine will call
the device support read/write routine –
with precord->pact=1

-Complete the I/O, set rval, etc.

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

Asynchronous I/O – Callbacks

!An interrupt handler must not call a record’s
process routine directly

!Use the callback system (callback.h) to do this

!Declare a callback variable
CALLBACK myCallback;

!Issue the following from the interrupt handler
callbackRequestProcessCallback(&myCallBack,

 priorityLow, precord);

!This queues a request to a callback handler thread
which will perform the lock/process/unlock
operations shown on the previous page

!There are three callback handler threads
"With priorities Low, Medium and High

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

Asynchronous I/O – ASYN

!This should be your first consideration for new
device support

!It provides a powerful, flexible framework for
writing device support for
"Message-based asynchronous devices

"Register-based synchronous devices

!Will be completely described in a subsequent
lecture

ASYN will be covered in the next session.
You will find the package and documentation on the EPICS web site.

Caveat – there is a learning curve for ASYN … my rule of thumb:

ASYN makes it easy to do the hard stuff, but hard to do the easy stuff.

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

Hands on
Commands to build a very simple device support

k.furukawa, jan.2009.

get rrcat.tar.gz from

http://www-linac.kek.jp/epics/second/rrcat.tar.gz

open terminal

mkdir second

cd second

makeBaseApp.pl -t ioc Clock1

makeBaseApp.pl -t ioc -i -p Clock1 Clock1

tar xzf ~/Desktop/rrcat.tar.gz

perl -i -pe s/CLOCK/{your-username}/ Clock1App/Db/aiSecond.db

example: perl -i -pe s/CLOCK/user7/ Clock1App/Db/aiSecond.db

make clean install 2>&1 | tee make.log

(if your shell is csh : make clean install |& tee make.log)

cd iocBoot/iocClock1

chmod +x st.cmd

./st.cmd

from another terminal

camonitor {your-username}:SEC1 {your-username}:SEC10

example: camonitor user7:SEC1 user7:SEC10

Please look in the files

Clock1App/src/devAiSecond.c

Clock1App/src/aiSecond.dbd

Clock1App/Db/aiSecond.db

Kazuro Furukawa, KEK, Jan.2009.

Developing Device Support

EPICS Workshop 2009, RRCAT, India

Thank you

