

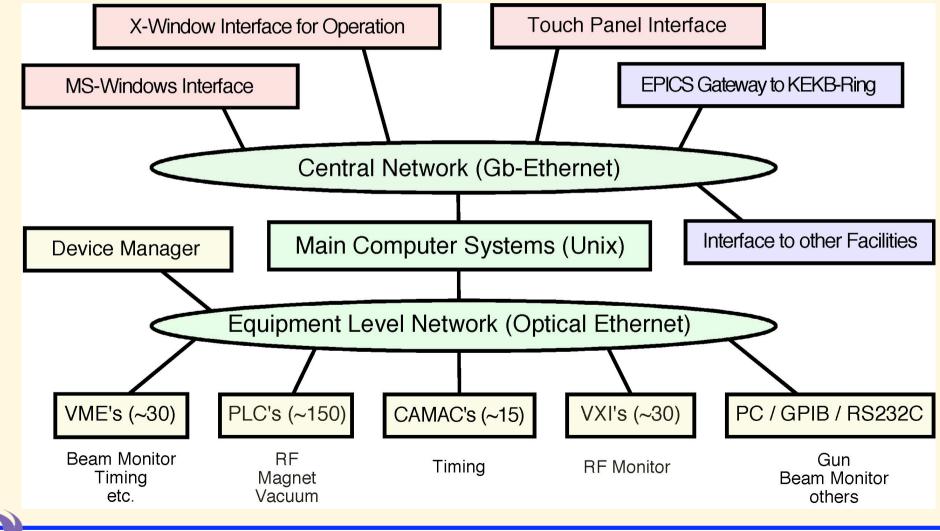
1

Event System at KEK

Kazuro Furukawa, KEK

KEKB and Linac Control Groups

<kazuro.furukawa@kek.jp> Jan. 2009.



2

Linac; Original Physical Structure

Multi-tier, Multi-hardware, Multi-client, ...

Linac; Original Software Architecture

Base control software structure for Multi-platform

- Any Unix, OS9, LynxOS (Realtime), VMS, DOS, Windows, MacOS
- TCP UDP General Communication Library
- Shared-Memory, Semaphore Library
- Simple Home-grown RPC (Remote Procedure Call) Library
- Memory-resident Hash Database Library

Control Server software

- Lower-layer servers (UDP-RPC) for control hardware
- Upper-layer server (TCP-RPC) for accelerator equipment
- Read-only Information on Distributed Shared Memory
- Works redundantly on multiple servers

Client Applications

- Established applications in C language with RPC
- Many of the beam operation software in scripting language,
 - ¤ Tcl/Tk
 - ば SADscript/Tk

Network with only IP/Ethernet

The policy chosen when we upgrade Linac in 1993

- Make network management simpler
 - **Faster switches, routing, network-booting, etc.**
- Avoid Hardware failure and analysis effort with old field network
 - Home-grown field networks need much dedicated man-power
- Cost for optical Ethernet went down at around 1995
 - **¤**Linac has high-power modulator stations, noise source
- Nowadays many facilities have this policy with GbE
 - \blacksquare J-PARC controls basically followed this
- More and more intelligent network devices
 - ¤ex. Oscilloscopes with Windows/3GHz-Pentium built-in
 - Even EPICS IOC, MATLAB, or others can be embedded
- Network components can be replaced one-by-one
- Security consideration will be more and more important

Communication Network at Linac

Fiber-optic Networks (1982~)

- **Because of High-power modulators for rf systems**
- *~30 Loops to connect many equipment controllers
 - However, the fiber-optic Technology was not mature enough yet
 - Often Failed and Loop Topology made it difficult to identify the trouble

All IP network (1993~)

Still all Fiber-optic

¤(Faster Ethernet enables shorter packets and less failures)

Inherited at J-PARC Controls as well

Gradual Transition of Technologies

From FDDI + 10Base-FL to 1000Base-LX + 100Base-Fx

Redundancy (1996~)

At more than 40 Ethernet links

Helped continuous operation in spite of a failure at night

Redundant Transceivers, then Rapid Spanning-tree and HSRP/VRRP

6

Equipment Controllers at Linac

1982~(1997) (1st generation) ***300 microprocessor-based controllers Linked together with home-grown fiber-optic network** 1993~now (upgrade of controls) *150 PLCs (programmable logic controller) **Linked via only Fiber-optic Ethernet/IP** Control communication with servers and program development 1995~now (upgrade for KEKB) **Direct Fiber-optic Ethernet/IP to each Controllers** 30 VXI for rf measurement ♦ 7 VME / 10 CAMAC for Timing (will retire soon) 20 VME for Beam monitors (will retire soon) 2007~ (upgrade for 50Hz beam switching) *13 (increasing) VME for "event" handling, timing, Ilrf controls, etc. 24 Oscilloscopes with WindowsXP IOC for 100 BPMs 10Gs/s, 50Hz acquisition, local processing with 20 calibration parameter/BPM

7

EPICS Transition at Linac

Home-grown RPC at Linac (1990~/1993~)
Bad timing but no choice because of end of old mini-computer support
No real transition to EPICS yet at Linac
There are middleware and applications
LynxOS Transition was developed (1994~1996)
To cover both RPC and EPICS with pthread, posix
Mostly working, Failed to get funding for Hardware/Software upgrade
Gateways to EPICS in several ways
Software-only IOC and Gateway (Clients to both RPC/CA)
Portable Channel Access Server of EPICS-3.12 (1995~)
Soft-IOC with device support to Linac RPC (2002~)
Real IOCs are increasing
PLC(rf,vacuum,magnet) and Linux, Oscilloscope(bpm) with Windows, VME(IIrf and timing)

*****RPC servers read EPICS IOCs, EPICS gateways read RPC servers

FPICS

Recent Improvements

- PLCs with Embedded EPICS (Linux)
 - from Ethernet-only to Channel-Access-only

Event system introduction

Single fiber to distribute synchronized, 10ps timing, 50Hz interrupts, data, etc

- EPICS-embedded Oscilloscopes (Windows)
- FPGA-based EPICS-embedded controllers (Linux)
- Zlog operation log improvements
 - Used also at J-PARC, RIKEN, and BINP
- Reliability improvement studies
 - Redundant IOC, ATCA and EPICS, Test systems

8

Linac & PF & KEKB

Simultaneous Continuous Injection to PF, KEKB-HER and KEKB-LER

- 50Hz Beam Pulses are Shared between 3 Rings
 - With very different Beam Properties, in Energy, Charge, etc.
- *****50Hz Beam Instrumentation (Beam Position Monitor)
 - Conly Passive Components other than Oscilloscope (Tek-DPO7104)
 Windows-embedded (3GHz Intel), EPICS-3.14.9, VC++
 - Cone Oscilloscope reads 2-5 BPMs, 24 Oscilloscopes Installed
 Synchronized 100-BPM Read-out
- Introduction of Event System, EVG230-EVR230RF from MRF
 - × 10 EVR's Installed, 1/3 of Old Timing Stations Replaced
 VxWorks-5.5.1, EPICS-3.14.9, (Gave-up with RTEMS)
 - Event drives Low-level RF in VME, BPM Oscilloscopes over Network
 - Gun Parameters, Pulsed Magnets, Kickers, etc are Controlled 50Hz
 - **Beam Pattern Rules on Client Script, can be Downloaded every second**
- More Development Needed
 - **Flavoured Beam Feedback Systems**
 - **Event System Integrity Monitor**

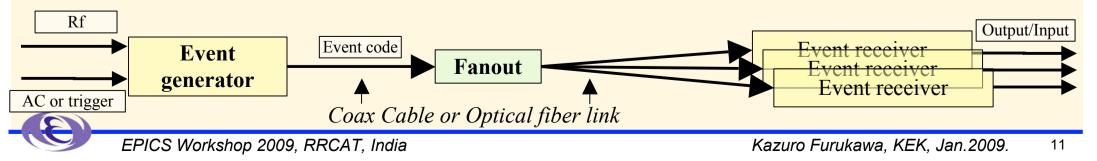
EPICS

EVG & Timing

q

Event System

- Quasi-simultaneous Injection
 to KEKB-HER, KEKB-LER, and PF
 2.5GeV to 8GeV, 0.1nC to 10nC
- Stable stored beam current at three rings
 - Should improve collision tuning with Crab cavities
- Should improve the quality of experimental data at PF
- Fast switching of many device parameters
 - **In 20ms / 50Hz**
 - Should be reliable because beam power is much different
- MRF Series 230 Event Generator / Receiver
 - **VxWorks** 5.5.1, **MVME**5500, (Originally with **RTEMS** but...)
 - Timing precision less than 10ps (TD4 provides 3ps)
 - Multi-mode fiber and single-mode fiber for longer distance

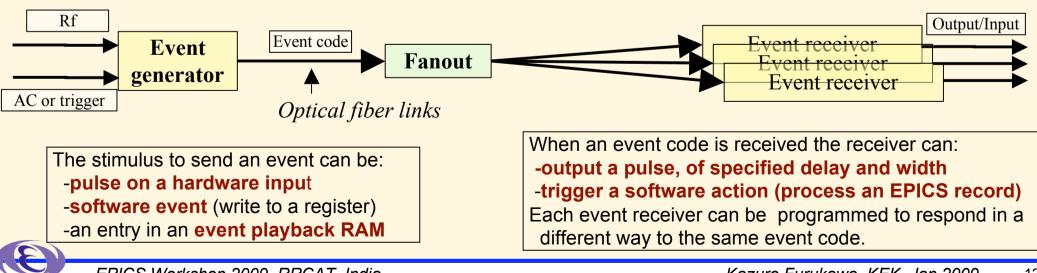


Event System

Many accelerator system require timing signals and accompanying information (event)

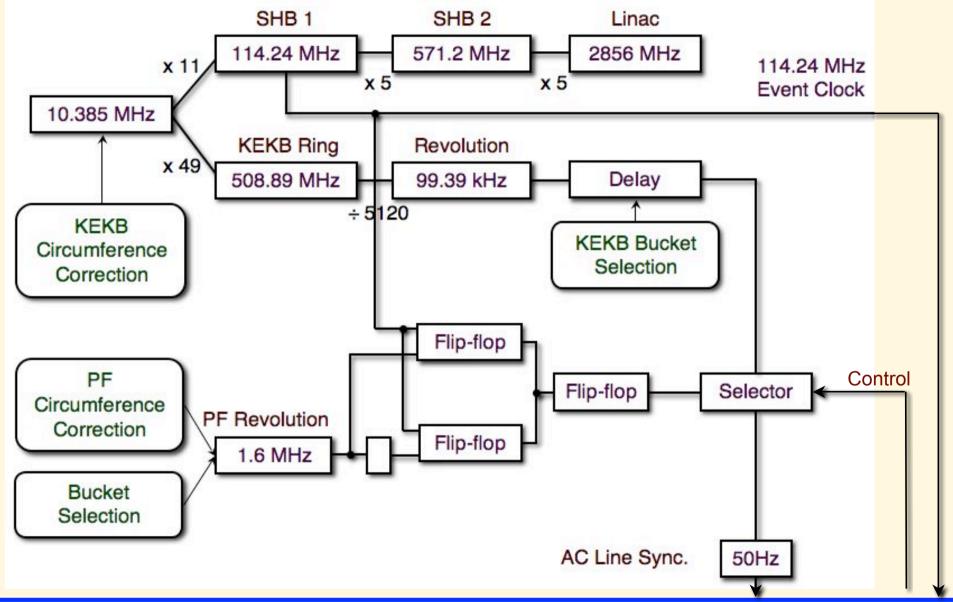
- Several facilities combined and used at KEKB and Linac
 - **Fast Timing signals are provided with delay module TD4/TD4V**
 - Need timing trigger and rf clock
 - (Slow) Events are provided in another facility
 - Combining Hardware and Software
- Event/Timing Systems which distribute the both timing and event are developed at Argonne/SLS/Diamond, and are employed at many institutes (Event Generator/Receiver)
 - Fast Timing, rf clock, Hardware event, Software Interrupt, can be handled in one combined system with a single fiber cable
 - Especially in EPICS, event can be connected EPICS Event directly, so record/database programming is possible

Event System

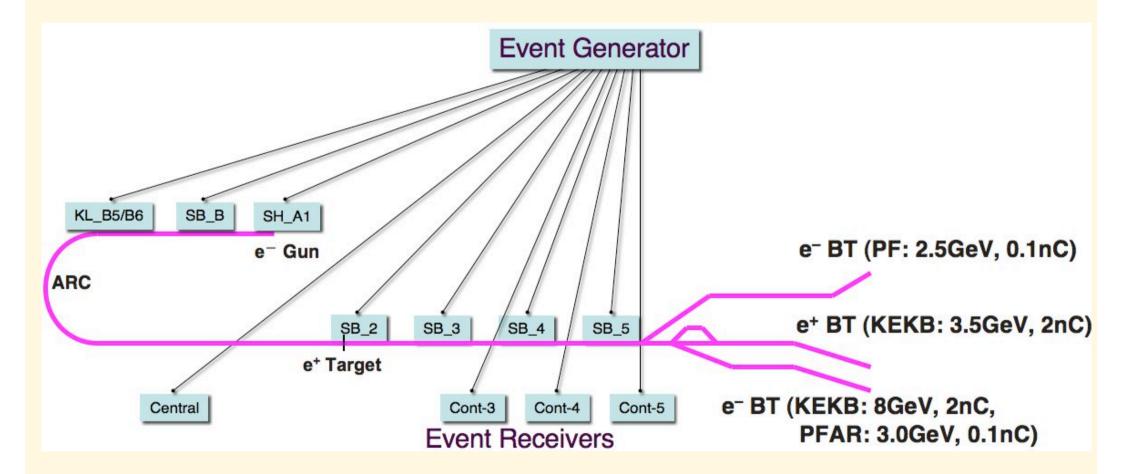

Distribution mechanism of timing with data/information

Developed based on experiences at several accelerator institutes

- APS at Argonne (ANL/APS)
 IDIAMOND
 X DIAMOND
 X DIAMOND
- Swiss Light Source (PSI/SLS)


¤(TRISTAN, KEKB, Linac)

- New Event System (EVG/EVR-200/230)
 - **Employment at many accelerator institutes**
 - DIAMOND, SLS, BEPCII, LCLS, Shanghai, KEK-Linac, Australia, ...
 - (SNS), (LANL), (BNL), ...
 - **Many functionalities**
 - Bit rate up to 2.5Gbps, Event rate 50-125MHz, ~10ps precision,
 - 8bit signal, 2kbyte data buffer, EPICS support



Basic synchronization outside of EVG

Event system configuration, autumn 2008

Beam mode pattern generation

- **•** Every pulse (every 20ms) corresponds to a beam mode.
- 10 different beam modes are defined (for KEKB e+, etc).
- One beam mode may contain many event codes.
- About 50 event codes are defined.
- Some events correspond to many functions, and others to specific devices.
- Beam pattern buffer length (n) can be 2 to 500 (20ms x 500 = 10 seconds).
- **A** new pattern is loaded at the end of the previous pattern.
- Otherwise, the pattern repeats forever.
- Pattern generator software arbitrates requests from downstream rings.
- There are many pattern rules due to pulse device features and limitations.

Beam mode pattern generation

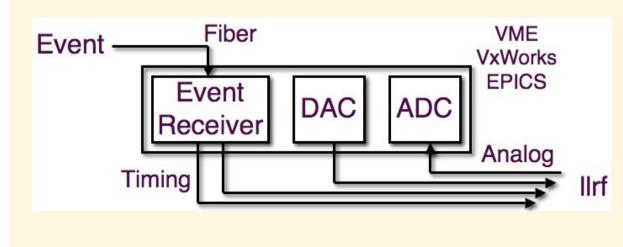
Pulse 1	Pulse 2	Pulse 3	Pulse n
Beam Mode 1	Beam Mode 2	Beam Mode 3	 Beam Mode n

									. In	jec tio	n Pa	ttern	Pane	6: U	EΛ										v0.
tead																									
pdate :	2	006/	2/06	20:3	1:39	R	lead	Patte	m ā	Buff	or	Sa	ve												
Read Start II	NDE	<: [1	End	INDE	K:	100					1													
int																									
pdate :	-					5	iet ->	Patt	em	1 3	lave		load	data	10	Load	data	6 In	lex :	0					
affer						-				-		-			-										
pdate :	1 2	2006/	2/08	19:15	9:37		iet - >	Buff	ler	B	atter	-> Pt	tter	1											
index						-			-	-				-											
10000					-		es al		-			-	. 1												
Buff : 3	start	IND	x	1	tra	104D	EX:	100		INDE:	X - >	Buffe	r												
	ŒKB		-		(EKB				111	Set E	leoin	Patt	em												
K	EKB			K	EKB	e+ S	tudy						▲ []]												
			_					- Contraction				1.													
	FLCT			P	F(CT					Star	t Val	we: [2	1	ind V	ww.	100	E	ven	Nand	Hr	-1				
	T-A1	8-		P	F-A1	e- 8	bady	8		Star	t Val	we: [2	•	ind V	white:	100	E	ven	Nand	Her	-1				
-	T-A1 AR i	8- 1-		P		e- 8	bady					we: 2	•			100	1	iven	Nam						
-	T-A1	8- 1-		P	F-A1	e- 8	bady	8					•					ven	Nearrd			1			
-	AR i	8- 1-	0	P	AR e	e- Sta	bady	8			n Me		No	nject		-] -	ven 1-400			Set		151-5	00	
Mo	AR interest	e- r- ction	0	P	AR e	e- Sta	tudy atly	8		Beau	n Me	sde :	No	nject	lion	-] -				Set	22		10	25
F No 1-50 Read	T-A1 AR i Injo	8- 1- 1- 10-	_	P	150	e- S - St	tady aty 51-2	8	20	Bear 1-25	n Ma	ode : 251-	No 1	nject	ion 101-3		35	1-406	1	401	Set -450	1.2			25
F No 1-50 Read Buff	T-A1 AR i Injo	8- 1- 1- 10-	_	P	150	e- S - St	tady aty 51-2	8	20	Bear 1-25	n Ma	ode : 251-	No 1	nject	ion 101-3		35	1-406	1	401	Set -450	1.2			25
F No 1-50 Read	T-Al AR i Injec	8- ction 51-10	3	P(5	150	e- St.	tudy sty 51-21	8	9	Bear 1-256	n Mc	ide : 251- 12	• No 1	nject	ion 101-3	50	35	1-400	19	401	450 21	22	23	24	
F No 1-50 Read Buff Set	T-A1 AR i Injo	8- 1- 1- 10-	_	P(5	150	e- S - St	tady aty 51-2	8	20	Bear 1-25	n Ma	ode : 251-	No 1	nject	ion 101-3		35	1-406	1	401	Set -450	1.2			
F No 1-50 Read Buff	T-Al AR i Injec	8- ction 51-10	3	P(5	150	e- St.	tudy sty 51-21	8	9	Bear 1-256	n Mc	ide : 251- 12	• No 1	nject	ion 101-3	50	35	1-400	19	401	450 21	22	23	24	

File		InjPattern-	multi		v0.1						
- Priority	1			Update: 20	08/12/15 07:38:45						
PF-A1 e-	KEKB e-	KEKB e+	PF(CT) e-	PF-A1 e-	AR e-						
KEKB e-	0 Hz 🛁	0 Hz 🛁	0 Hz 🛁	0 Hz 💻	0 Hz 🚽						
KEKB e+	12.5.11-	0.0.11-	0.0.11-	0.0.11-							
AR e-	12.5 Hz	0.0 Hz	0.0 Hz	0.0 Hz	0.0 Hz						
PF(CT) e-	12.5 Hz	0.0 Hz	0.0 Hz	0.0 Hz	0.0 Hz						
KEKB e- Study	-KEKB e- Study	KEKB e+ Study	-PF(CT) e- Study-	-PF-A1 e- Study-	AR e- Study						
KEKB e+ Study	0 Hz -	0 Hz 🚽	0 Hz 🛁	0 Hz 🛁	0 Hz 🚽						
PF(CT) e- Study											
PF-A1 e- Study	0.0 Hz	0.0 Hz	0.0 Hz	0.0 Hz	0.0 Hz						
AR e- Study 🛛 🟹	0.0 Hz	0.0 Hz	0.0 Hz	0.0 Hz	0.0 Hz						
Up Down	Read Set ALL	. "O Hz"			Set						
Ready.											

Manual pattern designer

A version for current operation

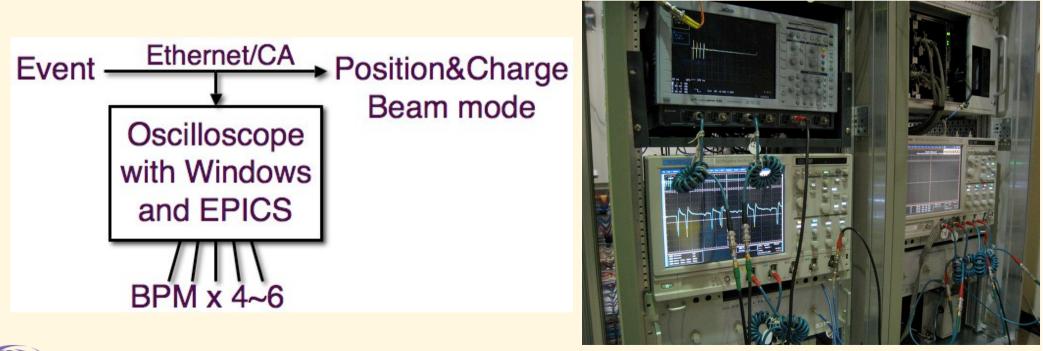


LLRF

Timing and analog signals are essential for absolute energy, energy spread, and dual-bunch energy equalization.

Signals can be switched pulse-by-pulse.

Driver klystrons (SB), energy tuner klystron (KL), and sub-harmonic bunchers (SH) are managed by the event system.



BPM

DPO7104 can acquire data in 50Hz .

- Beam modes are recognized by events through network.
- Clients can monitor data of an interested beam mode.
- 100 BPMs are synchronized.

Parameters

Parameters switching via Event system

- RF Timing x~35
- LLRF x~11
- Gun voltages, fast delays, x4
- Pulsed magnets x~12
- Injection system x~4
- BPM over channel access x~100
- Basically sufficient for fast beam mode switching
- More parameters next year
- Integrity monitors
- Improved slow beam feedback, fast feedback, etc.

Thank you

Thank you

