Development of EPICS Embedded Image Processing System

Takashi Obina, Jun-ichi Odagiri, Ryota Takai

KEK, Accelerator Laboratory

Outline

- Requirements for Image Processing
- Our Solution
- Driver/Device Support
- Display
- Application
- Conclusion

Requirements for Image Processing

• EPICS !

Stable operation

- Update Rate
 - at least 1Hz; Faster is better
 - 10Hz is enough for most purpose (for Humanbased feedback or tuning)
 - 30 Hz is not necessarily required

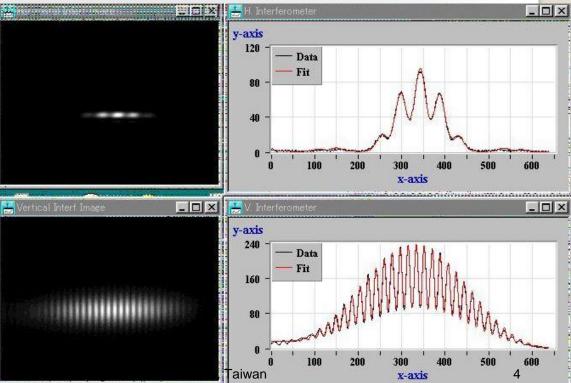
Needs external trigger

- Background subtraction for Screen Monitor
- Capability for complex calculation
 - Beam Size Monitor with the SR Interferometer
 - Nonlinear curve fitting is required

Requirements from operation : NOT so severe

Example images : KEK-PF

ScreenMonitor (Beam Transport Line)



SR Monitor

SR Interferometer (Beam Size Monitor)

15/Jun/2011

EPICS Coll

There are so many possibilities ...

Hardware

- PC / Embedded platform
- Operating System
 - Linux / Windows
- Interface
 - Image Grabber Board (PCI, PCIe, etc)
 - USB / FireWire (IEEE1394)
 - GigE (Ethernet)
 - Camera Link

Camera

- Speed (Frame Rates [fps])
- Resolution [pixels] / number of bits
- CMOS or CCD

What was important for us?

- Stability
- Rapid application development
- Cost Effectiveness
- Support of colleagues and/or company
- Long-term operation
 - "Lifetime" of software and hardware

Our misery experience

- We have been used Windows PC and frame grabber for interferometer analysis
- The software is 'discontinued'
 Hardware/Software Only supports Win98!
- Didn't work after the "Windows Update"

MUST be avoided in the new system

Our Solution

- Yokogawa PLC-Based System
- CPU : F3RP61 with Linux OS
- Image Acquisition Module (UM02)
 PCI Interface to CPU

This system is supposed to fulfill the requirements. Especially for "Hardware Reliability" and "Product Lifetime", and "support of colleagues"

Benefit of PLC-Based system

- Many Digital and Analog I/O module
 cheaper than VME
- We can easily control other equipments such as screen monitor driver
- Reliable Hardware (No FAN)
- Compact

- Easy to handle by EPICS
- Linux have many software tools

Test on Table

15/Jun/2011

EPICS Collaboration Meeting, NSRRC, Hsinchu, T

ACE

Power Supply

L N 100 J 40 VAX

DEC

V

°15

°15

W

+W

UM02

DO

CPU

Main Specifications of F3UM02

item	Specification	
Number of Channels	2 ch	
Compatible Camera	Single Tap (8bit/pixel)	
	Dual Tap (16bit/pixel)	
	RGB Color (24bit/pixel)	
Max. Connections	2 Color RGB Cameras	
	(6 Monochrome Cameras)	
ADC	100MHz	
Resolution of Digitizer	8 bits	
Camera Resolution	16K x 16K	
Trigger	External / Internal (software)	

Record Support

- New record type "graphics record"
 - Originally developed for other project (2003)
 - Just remove several unused functionality
- Raw Image (waveform)
- Reduced-size Image
- H/V Size information
- Background subtraction
- Image analysis
 - projection to horizontal/vertical direction
 - peak position, peak value, FWHM, etc
 - Possible to enable/disable these calculations

Device Support

- PCI bus between CPU and UM02 module
- devGrF3UM02.c

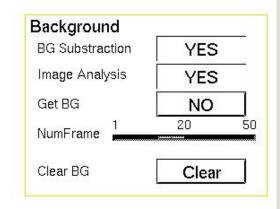
dbd : device(graphics, INST_IO, devGrF3UM02, "F3UM02")

- Interface graphicsRecord to hardware
- issued by "I/O_interrupt" scan request
 just transfer raw image data to record

Display

- For test : python + PIL (Python Imaging Library)
- For Operation : EDM

Example : BG Subtraction


Raw Image

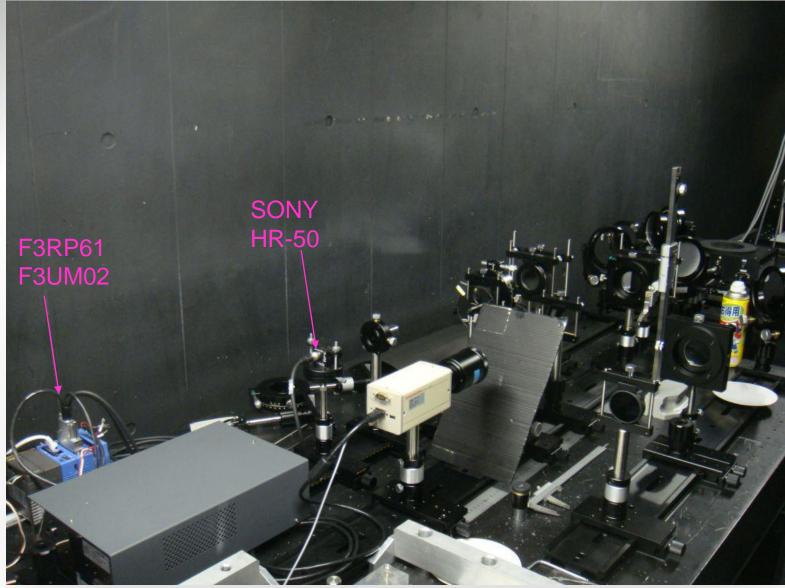
Background

Corrected Image (=Raw-BG)

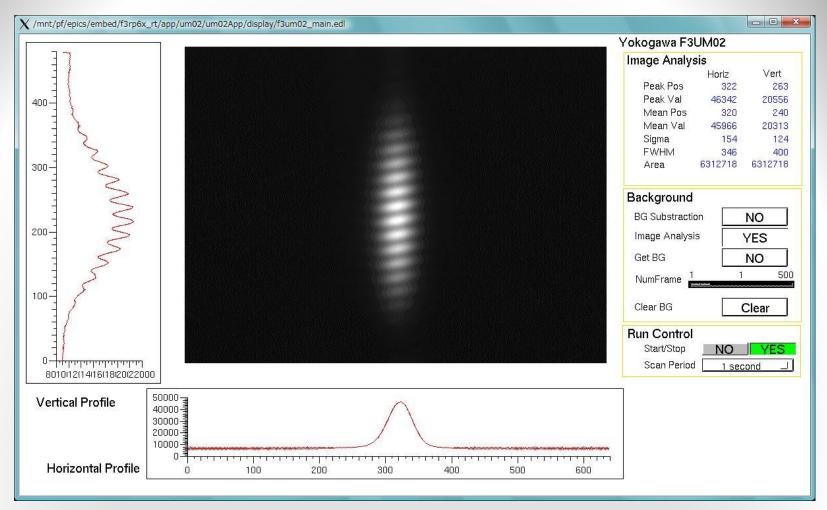
inchu, Taiwan

Example : Profile, peak, etc

These parameters are calculated in the GraphicsRecord

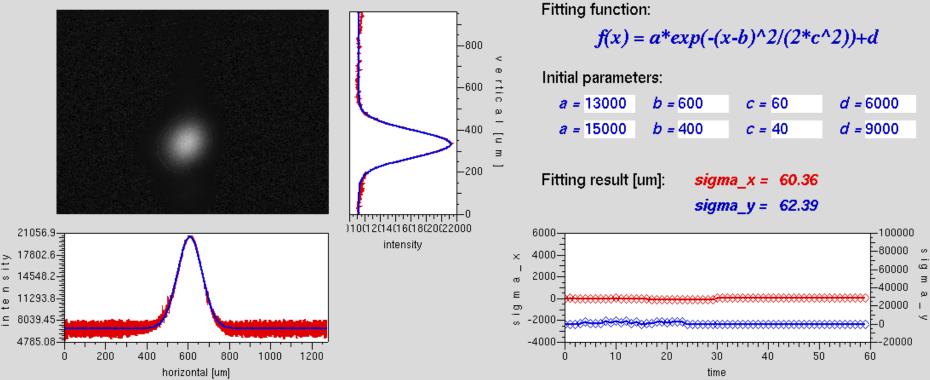

X /pf/epics/embed/f3rp6x_rt/app/um02/um02App/display/tmp.edl

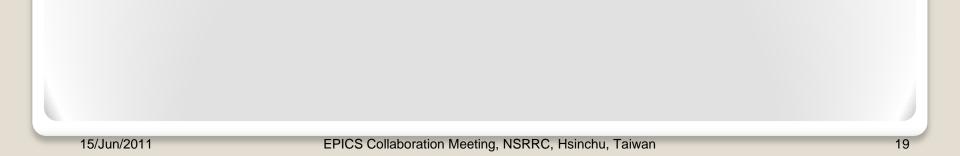
Yokogawa F3UM02 Image Analysis Vert Horiz Peak Pos 147 201 Peak Val 4100 5044 400 Mean Pos 169 224 Mean Val 3718 1672 Sigma 53 51 **EWHM** 269 194 234206 234206 Area 300-Background **BG** Substraction YES 200-Image Analysis YES Get BG NO 21 500 NumFrame 100. Clear BG Clear Run Control Start/Stop NO O٠ արությունություն Scan Period 1 second (20)40608(101214000 20000-3 Vertical Profile 15000-3 10000-3 5000-0-111111 1.1.1.1.1.1.1 1.1.1.1.1.1 111 100 200 300 400 500 600 n Horizontal Profil


15/Jun/2011

_ 🗆 ×

Example : Interferometer

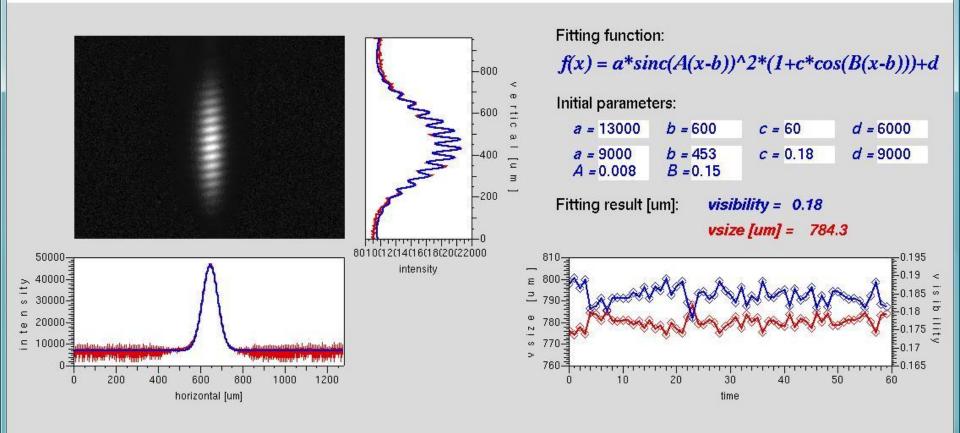

Due to deformation and dirty of the mirror and extraction window, interference fringe is not good as other beam line. We will replace the mirror and window in this summer.


15/Jun/2011

EPICS Collaboration Meeting, NSRRC, Hsinchu, Taiwan

X/home/takai/profileApp/testApp/display/sample.edl

Beam Profile Monitor @ BL27



- 🗆 🗵

X /home/takai/profileApp/testApp/display/sample_sinc.edl

Beam Size Monitor @ BL27

As a first step, nonlinear curve fit is tested by gnuplot. If we use other (fast) PC or server machine, we can use matlab or other program.

15/Jun/2011

EPICS Collaboration Meeting, NSRRC, Hsinchu, Taiwan

Performance

- Free Run Mode : 15Hz update rate
- Trigger Mode
 tested : 1Hz, 2Hz, 5Hz, 10Hz
- Linux RT version is not used yet

Performance : CPU Load (1)

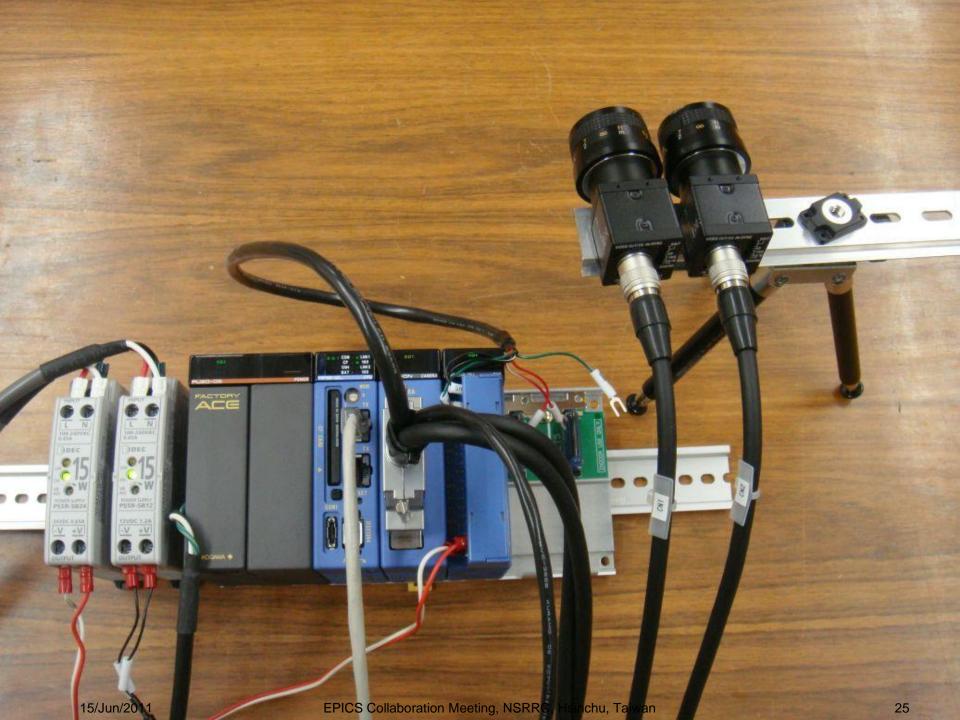
1) NO Analysis, NO Channel Access

Repetition Period	CPU Load (Typ)	CPU Load (max)
1 sec	3.0 %	4.0 %
0.5 sec	3.7 %	7.3 %
0.2 sec	16.0 %	17.0 %
0.1 sec	31.0 %	32.6 %

2) Analysis Only

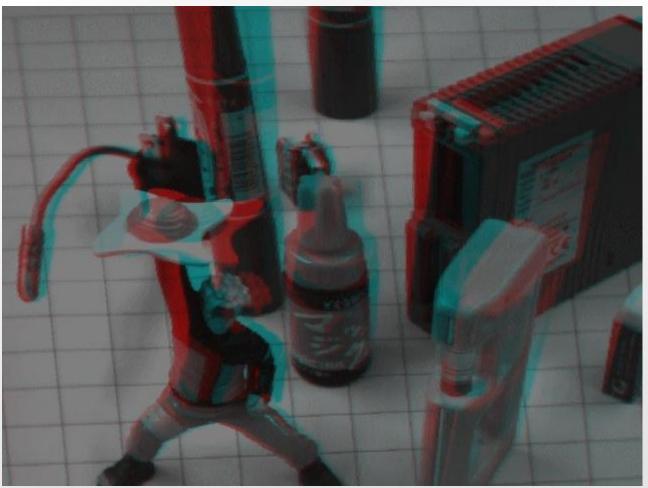
Repetition Period	CPU Load (Typ)	CPU Load (max)
1 sec	18.6 %	19.0 %
0.5 sec	37.0 %	37.3 %
0.2 sec	91.3 %	91.9 %
0.1 sec	N.A.	N.A.

CPU Load (2)


3) Channel Access Only. (NO Analysis)

Repetition Period	CPU Load (Typ)	CPU Load (max)
1 sec	6.7 %	7.3 %
0.5 sec	13.7 %	14.0 %
0.2 sec	34.0 %	35.0 %
0.1 sec	69.0 %	70.0 %

We plan to optimize 'Analysis' routine.


How to do with NTSC signal?

- In the beam transport line, we have been used about 10 CCD cameras with NTSC output, and commercial video switcher is used for many years.
- UM02 input signal : RGB color
- We must use NTSC RGB converter
 - Confirmed to capture the image
 - Linearity is not evaluated yet

Just for fun

3D Movie with two camera; Phantogram

Conclusion

- We have developed image acquisition system on embedded platform
- New Record/Device support is developed
 Basic analysis is performed inside the record
- Testing in PF-Ring, Linac
- What's Next?
 - Improvement of RT performance
 - Calibration of NTSC to RGB converter
 - Documentation
 - Asyn / AreaDetector / SynApps ?

References

PCaPAC

 http://accelconf.web.cern.ch/AccelConf/pcapac 2010/papers/thpl018.pdf

"Channel Access Everywhere" Policy

Adopt: Keep It Simple and Stupid Avoid : Reinventing the wheel