

Session 101: High-Performance Systems

Extending *µTCA*^{*m*} to Higher Performance Applications

ATCA/MTCA summit, November 10th, 2010

Convention Center, Santa Clara, CA

• founded in 1990

About N.A.T.

- based in Sankt Augustin, Germany
- highly profitable
- ISO 9001:2008 (+ military/telecom elements)
- focus: embedded communication
- international customer base
- product lines:
 - board level products: PMC, cPCI, VME, AMC, MCH, etc.
 - software: protocols, applications, drivers, etc.
 - system level products: standard, custom, proprietary

Agenda

- Need for higher performance MicroTCA ?
 - History
 - Current Status
 - Future
- MicroTCA for Physics*
 - Requirements
 - Concept
 - Challenges

Conclusion

*: the terms "MicroTCA for Physics" or "MTCA.4" refers to the PICMG "xTCA for Physics Working Group 1" and not to a yet adopted sepecification.

All trademarks and logos are property of their respective holders

Need for higher Performance ? History Review

- Short Review
 - many applications are based on VME, cPCI or IPCs
 - markets: defence, aerospace, medical, industrial, communication
 - problems:
 - bandwidth needs exceeding capabilities
 - system management (if any) is proprietary
 - concepts for redundancy or fault tolerance are proprietary
- ⇒ need for a new concept
- ⇒ need for better and higher performance

Need for higher Performance ? History Review

- Results
 - 2003: ATCA
 - 2004: AMC
 - 2006: MicroTCA
 - common features:
 - bandwidth improved: 40Gbps (ATCA), 10Gbps (MTCA)
 - system management mandatory: IPMI/RMCP
 - protocol agnostic: 1GbE, PCIe, SRIO, 10GbE

Need for higher Performance ? Current Status

- Consequence
 - Markets and Applications adopting MTCA
 - Industrial: larger IPCs and PLCs are replaced by MTCA
 - Telecom: MTCA base stations (UMTS, WiMAX, LTE)
 - Communication: test & measurem., logging + analysis
 - Defence: first communication concepts based on MTCA
 - Aerospace: first ground and airborne systems

- problems overcome ?
- customers satisfied ?

Need for higher Performance ? Future

- Problems
 - Misfit in standards
 - MTCA.0 defines 3 CLKs
 - AMC.0 R2 defines 4 CLKs plus 1 Fabric CLK
 - Insufficiencies:
 - cabeling at front of systems
 - insufficient board space (double width no benefit)
 - performance gap between ATCA and MTCA too big
- ⇒ need for an improved concept
- need for better and higher performance

All trademarks and logos are property of their respective holders

slide 7

Agenda

- Need for higher performance MicroTCA ?
 - History
 - Current Status
 - Future
- MicroTCA for Physics*
 - Requirements
 - Concept
 - Challenges

Conclusion

*: the terms "MicroTCA for Physics" or "MTCA.4" refers to the PICMG "xTCA for Physics Working Group 1" and not to a yet adopted sepecification.

All trademarks and logos are property of their respective holders

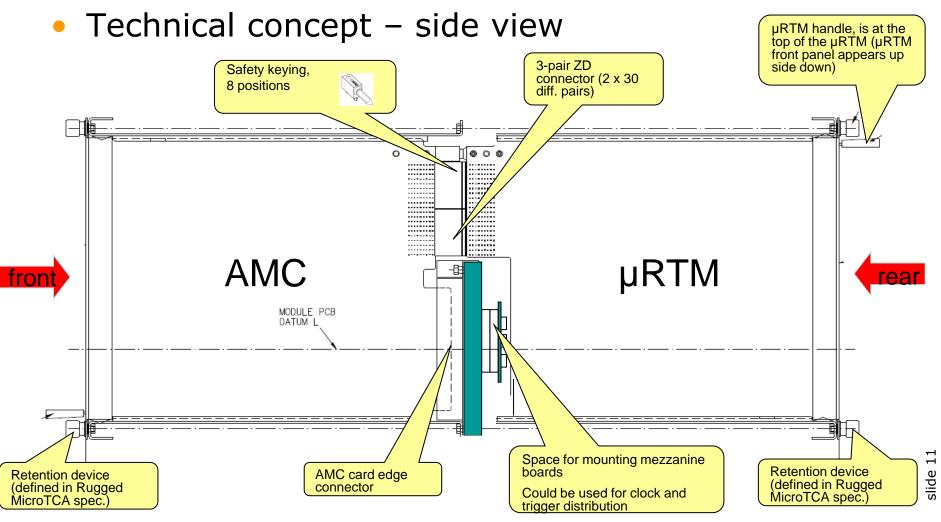
MicroTCA for Physics Introduction

- Customer: particle physics i.e. DESY, CERN, SLAC, LANL, KEK etc.
- Missing features:
 - no Rear Transition Module (RTM) for MTCA defined
 - special clock and trigger topology
 - sophisticated requirements for the clock and trigger accuracy

⇒ adaptions and extensions to MTCA standard required

Large Hadron Collider (LHC), CERN

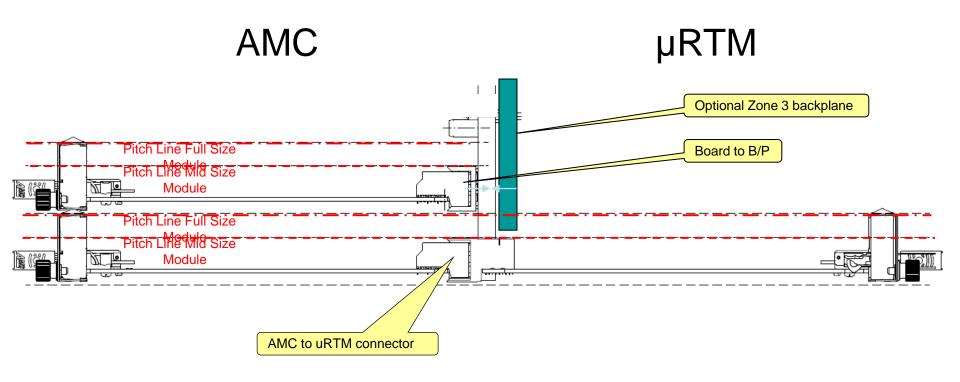
KATRIN



- Required changes to the standard and concept
 - AMC Module size: double-wide, mid-size
 - large µRTM real estate
 - use front panel mechanics based on Rugged uTCA
 - reuse existing AMC front panels for the µRTM
 - allowing mounting of mezzanine modules on the rear of the backplane
 - Optional zone 3 backplane

new mechanical concept required that at the same time provides backwards compatibility

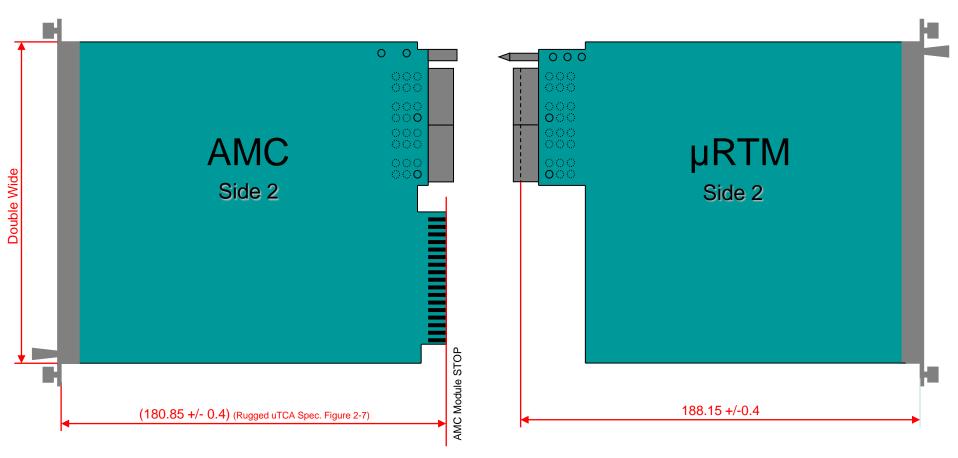
MicroTCA for Physics Concept – AMC and uRTM



^{© 2010} N.A.T. GmbH

MicroTCA for Physics Concept – AMC and uRTM

Technical concept – top view



All trademarks and logos are property of their respective holders

MicroTCA for Physics Concept – AMC and uRTM

Technical concept – mechanical sizes

All trademarks and logos are property of their respective holders

MicroTCA for Physics Concept – management

Technical concept – management

IPMB-L


- Connects the MCMC on the MCH to the MMC on the AMC Modules
- Radial architecture

IPMB-0

- Connects the MCMC on the MCH to the EMMC on the PM and CU
- Bused architecture

I2C-bus

- Connects the AMC to the µRTM
- The µRTM is treated as managed FRU of the AMC
- Not yet defined: management of RTM fans

All trademarks and logos are property of their respective holders

- Technical concept power requirement
 - 60 Watts per AMC slot and 20 Watts per uRTM slot
 - 12 slots, 80 Watts ea. = 960 Watts (720W front + 240W rear)
 - 2 MCHs, 37.5 Watts ea. = 75 Watts
 - 2 CUs, 80 Watts ea. = 160 Watts

 \rightarrow total PM output power = 1195 Watts

Assuming efficiency of PM = 90%

- \rightarrow total PM output power = 1195 Watts
- → total PM input power = 1328 Watts

- Technical concept cooling requirement
 - 12 AMCs + 12 uRTMS + 2 MCHs + 2CU

→ total PM input power = 1328 Watts

The uRTM has the same depth as the AMC

→ own fans for the uRTM

- physics require a uRTM temperature control within a range of 1°C
 - ➔ independent speed control of AMC and uRTM fans

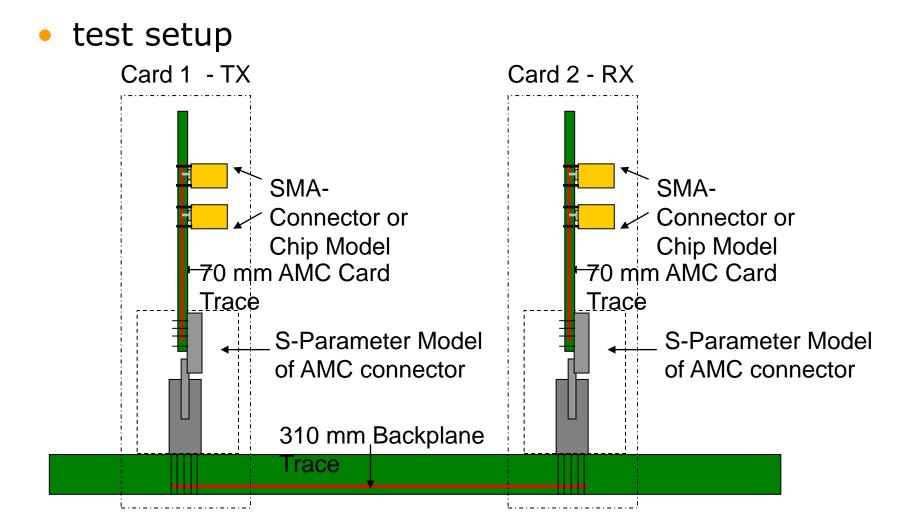
Challenge: independent fan control for AMC fans and RTM fans is not addressed in the current MTCA specification

⇒ standardized solution required, still a ToDo

- Technical concept bandwidth
 - currently used with MTCA: Gen1 of PCIe and SRIO

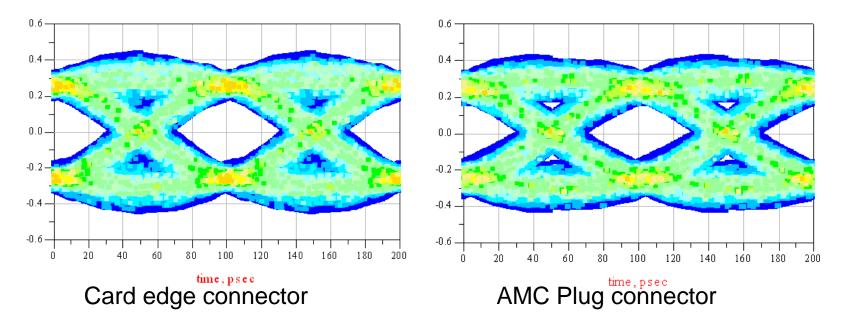
→ bandwidth of 10Gbps (3.125Gbps per lane)

future use requirement: Gen2 of PCIe and SRIO


→ bandwidth of 20Gbps (6.25Gbps per lane)

- Challenge:
 - currently used backplane connectors and AMC plugs commonly tested with 3.125GHz per lane

\Rightarrow connectors and plugs need to improve to 6.25GHz


MicroTCA for Physics Challenges – bandwidth

MicroTCA for Physics Challenges – bandwidth

- Results
 - 10.3125 Gbaud per second per differential pair
 - eye diagrams

Agenda

- Need for higher performance MicroTCA ?
 - History
 - Current Status
 - Future
- MicroTCA for Physics*
 - Requirements
 - Concept
 - Challenges

Conclusion

slide 20

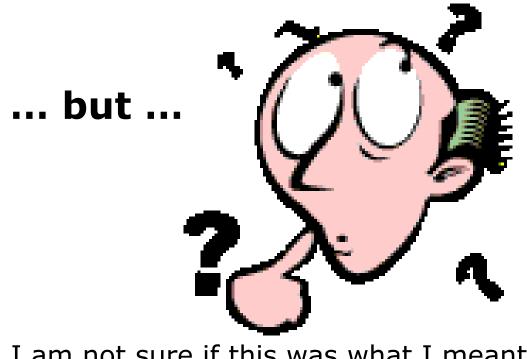
*: the terms "MicroTCA for Physics" or "MTCA.4" refers to the PICMG "xTCA for Physics Working Group 1" and not to a yet adopted sepecification.

Conclusion

- Need for higher performance has always been driving factor because of:
 - more space
 - enhanced features (i.e. management, fault tolerance, etc.)
 - higher bandwidth
 - → Is there need for higher performance with MTCA? YES!
- MicroTCA for Physics has added new challenges
 - introduction of uRTMs
 - ➔ backplane extension, cooling, management, etc.
 - use of 2nd generation of protocols
 - → twice the bandwidth of MTCA systems used today

 with MTCA.4* the gap between MTCA and ATCA has been closed:

Conclusion


 MTCA has grown up and left its childhood, making it attractive as a solid and sound platform to an even larger number of applications.

Round Up The last slide ...

This was it ...

I know, you have heard what I said ...

I am not sure if this was what I meant ...