
Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Date: 14 January 2011
Issue: 1
Page: 1 of 64
Author: Jukka Pietarinen

Event Receiver

cPCI-EVR-220, cPCI-EVR-230, PMC-EVR-230,

VME-EVR-230, VME-EVR-230RF, cPCI-EVRTG-300,

cRIO-EVR-300 and cPCI-EVR-300

Technical Reference

Firmware Version 0005

Contents

Introduction ..5

Functional Description ..5
Event Decoding...5
Heartbeat Monitor ...6
Event FIFO and Timestamp Events..6
Event Log..7
Distributed Bus and Data Transmission ...7
Pulse Generators..7
Prescalers ..8
Programmable Front Panel Connections ..8
Front Panel CML Outputs (VME-EVR-230RF only) ...9
cPCI-EVRTG-300 GTX Front Panel Outputs ..11
Configurable Size Data Buffer...14
Interrupt Generation ..14
External Event Input..15

Programmable Reference Clock ..15
Fractional Synthesiser..15

Connections ..15
cPCI-EVR-2x0 Front Panel Connections ...15
VME-EVR-230 and VME-EVR-230RF Front Panel Connections..16
VME P2 User I/O Pin Configuration ...17
PMC-EVR-230 Front Panel Connections...18
PMC-EVR-230 Pn4 User I/O Pin Configuration..19
cRIO-EVR-300 Front Panel Connections...20

cPCI-EVRTG-300 Front Panel Connections..20
cPCI-EVR-300 Front Panel Connections...21
VME-EVR-230 and VME-EVR-230RF Network Interface..22

Assigning an IP Address to the Module ...22

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Date: 14 January 2011
Issue: 1
Page: 2 of 64
Author: Jukka Pietarinen

Using Telnet to Configure Module ..22

Boot Configuration (command b) ..22
Memory dump (command d) ...23
Memory modify (commands d and m) ...23
Tuning Delay Line (command t) ..24
Upgrading IP2022 Microprocessor Software (command u) ..24
Linux...24
Windows...24

Upgrading FPGA Configuration File ...25
Linux...25
Windows...25
Linux...25
Windows...25

UDP Remote Programming Protocol ...26
Read Access (Type 0x01) ..26
Write Access (Type 0x02) ...27

cRIO-EVR-300 ...28
Connections ..28
Boot Monitor...28
Firmware Upgrade (on Linux) ...29

Programming Details ..29
VME CR/CSR Support..29
Event Receiver Function 0,1 and 2 Registers ...30

Register Map...31
SFP Module EEPROM and Diagnostics ..39

Application Programming Interface (API) ...39
Function Reference ...39

int EvrOpen(struct MrfErRegs **pEr, char *device_name);...39
int EvrClose(int fd);...39
int EvrEnable(volatile struct MrfErRegs *pEr, int state);..39
int EvrGetEnable(volatile struct MrfErRegs *pEr); ..39
void EvrDumpStatus(volatile struct MrfErRegs *pEr);..39
int EvrGetViolation(volatile struct MrfErRegs *pEr, int clear); ..39
void EvrDumpMapRam(volatile struct MrfErRegs *pEr, int ram);.....................................39
int EvrMapRamEnable(volatile struct MrfErRegs *pEr, int ram, int enable);......................39
int EvrSetForwardEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable);......39
int EvrEnableEventForwarding(volatile struct MrfErRegs *pEr, int state);.........................39
int EvrGetEventForwarding(volatile struct MrfErRegs *pEr);..39
int EvrSetLedEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable);.............39
int EvrSetFIFOEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable);39
int EvrSetLatchEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable);..........39
int EvrSetLogStopEvent(volatile struct MrfErRegs *pEr, int ram, int code, int enable);39
int EvrClearFIFO(volatile struct MrfErRegs *pEr);..39
int EvrGetFIFOEvent(volatile struct MrfErRegs *pEr, struct FIFOEvent *fe);39
int EvrEnableLogStopEvent(volatile struct MrfErRegs *pEr, int enable);...........................39
int EvrGetLogStopEvent(volatile struct MrfErRegs *pEr);...39
int EvrEnableLog(volatile struct MrfErRegs *pEr, int enable); ..39
int EvrGetLogState(volatile struct MrfErRegs *pEr, int enable); ..39

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Date: 14 January 2011
Issue: 1
Page: 3 of 64
Author: Jukka Pietarinen

int EvrGetLogStart(volatile struct MrfErRegs *pEr);...39
int EvrGetLogEntries(volatile struct MrfErRegs *pEr);..39
void EvrDumpFIFO(volatile struct MrfErRegs *pEr);..39
int EvrClearLog(volatile struct MrfErRegs *pEr);..39
void EvrDumpLog(volatile struct MrfErRegs *pEr);..39
int EvrSetPulseMap(volatile struct MrfErRegs *pEr, int ram, int code, int trig, int set, int
clear); ..39
int EvrClearPulseMap(volatile struct MrfErRegs *pEr, int ram, int code, int trig, int set, int
clear); ..39
int EvrSetPulseParams(volatile struct MrfErRegs *pEr, int pulse, int presc, int delay, int
width);...39
void EvrDumpPulses(volatile struct MrfErRegs *pEr, int pulses);......................................39
int EvrSetPulseProperties(volatile struct MrfErRegs *pEr, int pulse, int polarity, int
map_reset_ena, int map_set_ena, int map_trigger_ena, int enable);....................................39
int EvrSetUnivOutMap(volatile struct MrfErRegs *pEr, int output, int map);.....................39
void EvrDumpUnivOutMap(volatile struct MrfErRegs *pEr, int outputs);39
int EvrSetFPOutMap(volatile struct MrfErRegs *pEr, int output, int map);39
void EvrDumpFPOutMap(volatile struct MrfErRegs *pEr, int outputs);.............................39
int EvrSetTBOutMap(volatile struct MrfErRegs *pEr, int output, int map);39
void EvrDumpTBOutMap(volatile struct MrfErRegs *pEr, int outputs);39
void EvrIrqAssignHandler(volatile struct MrfErRegs *pEr, int fd, void (*handler)(int));....39
int EvrIrqEnable(volatile struct MrfErRegs *pEr, int mask); ..39
int EvrGetIrqFlags(volatile struct MrfErRegs *pEr);..39
int EvrClearIrqFlags(volatile struct MrfErRegs *pEr, int mask); ..39
void EvrIrqHandled(int fd); ...39
int EvrSetPulseIrqMap(volatile struct MrfErRegs *pEr, int map);39
int EvrUnivDlyEnable(volatile struct MrfErRegs *pEr, int dlymod, int enable);.................39
int EvrUnivDlySetDelay(volatile struct MrfErRegs *pEr, int dlymod, int dly0, int dly1);...39
int EvrSetFracDiv(volatile struct MrfErRegs *pEr, int fracdiv); ...39
int EvrGetFracDiv(volatile struct MrfErRegs *pEr); ..39
int EvrSetDBufMode(volatile struct MrfErRegs *pEr, int enable);39
int EvrGetDBufStatus(volatile struct MrfErRegs *pEr);...39
int EvrReceiveDBuf(volatile struct MrfErRegs *pEr, int enable);39
int EvrGetDBuf(volatile struct MrfErRegs *pEr, char *dbuf, int size);39
int EvrSetTimestampDivider(volatile struct MrfErRegs *pEr, int div);...............................39
int EvrSetTimestampDBus(volatile struct MrfErRegs *pEr, int enable);39
int EvrGetTimestampCounter(volatile struct MrfErRegs *pEr); ...39
int EvrGetSecondsCounter(volatile struct MrfErRegs *pEr);..39
int EvrGetTimestampLatch(volatile struct MrfErRegs *pEr);...39
int EvrGetSecondsLatch(volatile struct MrfErRegs *pEr); ...39
int EvrSetPrescaler(volatile struct MrfErRegs *pEr, int presc, int div);39
int EvrSetExtEvent(volatile struct MrfErRegs *pEr, int ttlin, int code, int edge_enable, int
level_enable); ..39
int EvrSetBackEvent(volatile struct MrfErRegs *pEr, int ttlin, int code, int edge_enable, int
level_enable); ..39
int EvrSetExtEdgeSensitivity(volatile struct MrfErRegs *pEr, int ttlin, int edge);...............39
int EvrSetExtLevelSensitivity(volatile struct MrfErRegs *pEr, int ttlin, int level);39
int EvrSetTxDBufMode(volatile struct MrfErRegs *pEr, int enable);.................................39

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Date: 14 January 2011
Issue: 1
Page: 4 of 64
Author: Jukka Pietarinen

int EvrGetTxDBufStatus(volatile struct MrfErRegs *pEr);...39
int EvrSendTxDBuf(volatile struct MrfErRegs *pEr, char *dbuf, int size);.........................39
int EvrGetFormFactor(volatile struct MrfErRegs *pEr);...39

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 5 of 64

Introduction
Event Receivers decode timing events and signals from an optical event stream transmitted by an
Event Generator. Events and signals are received at predefined rate the event clock that is usually
divided down from an accelerators main RF reference. The event receivers lock to the phase
event clock of the Event Generator and are thus phase locked to the RF reference. Event
Receivers convert event codes transmitted by an Event Generator to hardware outputs. They can
also generate software interrupts and store the event codes with globally distributed timestamps
into FIFO memory to be read by a CPU.

Functional Description
After recovering the event clock the Event Receiver demultiplexes the event stream to 8-bit
distributed bus data and 8-bit event codes. The distributed bus may be configured to share its
bandwidth with time deterministic data transmission.

Event Decoding
The Event Receiver provides two mapping RAMs of 256 × 128 bits. Only one of the RAMs can
be active at a time, however both RAMs may be modified at any time. The event code is applied
to the address lines of the active mapping RAM. The 128-bit data programmed into a specific
memory location pointed to by the event code determines what actions will be taken.

Event code Offset Internal functions Pulse Triggers ‘Set’ Pulse ‘Reset’ Pulse

0x00 0x0000 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits
0x01 0x0010 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits
0x02 0x0020 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits
… … … … … …

0xFF 0x0FF0 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits 4 bytes/32 bits

There are 32 bits reserved for internal functions which are by default mapped to the event codes
shown in table . The remaining 96 bits control internal pulse generators. For each pulse generator
there is one bit to trigger the pulse generator, one bit to set the pulse generator output and one bit
to clear the pulse generator output.

Map bit Default event code Function
127 n/a Save event in FIFO
126 n/a Latch timestamp
125 n/a Led event
124 n/a Forward event from RX to TX
123 0x79 Stop event log
122 n/a Log event
102 to 121 n/a (Reserved)
101 0x7a Hearbeat
100 0x7b Reset Prescalers
99 0x7d Timestamp reset event
98 0x7c Timestamp clock event
97 0x71 Seconds shift register ‘1’
96 0x70 Seconds shift register ‘0’

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 6 of 64

74 to 95 (Reserved)
73 Trigger pulse generator 9
… …
64 Trigger pulse generator 0
42 to 63 (Reserved)
41 Set pulse generator 9 output high
… …
32 Set pulse generator 0 output high
10 to 31 (Reserved)
9 Reset pulse generator 9 output low
… …
0 Reset pulse generator 0 output low

Heartbeat Monitor
A heartbeat monitor is provided to receive heartbeat events. Event code $7A is by default set up
to reset the heartbeat counter. If no heartbeat event is received the counter times out (approx. 1.6
s) and a heartbeat flag is set. The Event Receiver may be programmed to generate a heartbeat
interrupt.

Event FIFO and Timestamp Events
The Event System provides a global timebase to attach timestamps to collected data and
performed actions. The time stamping system consists of a 32-bit timestamp event counter and a
32-bit seconds counter. The timestamp event counter either counts received timestamp counter
clock events or runs freely with a clock derived from the event clock. The event counter is also
able to run on a clock provided on a distributed bus bit.

The event counter clock source is determined by the prescaler control register. The timestamp
event counter is cleared at the next event counter rising clock edge after receiving a timestamp
event counter reset event. The seconds counter is updated serially by loading zeros and ones (see
mapping register bits) into a shift register MSB first. The seconds register is updated from the
shift register at the same time the timestamp event counter is reset.

The timestamp event counter and seconds counter contents may be latched into a timestamp latch.
Latching is determined by the active event map RAM and may be enabled for any event code.

An event FIFO memory is implemented to store selected event codes with attached timing
information. The 80-bit wide FIFO can hold up to 511 events. The recorded event is stored along
with 32-bit seconds counter contents and 32-bit timestamp event counter contents at the time of
reception. The event FIFO as well as the timestamp counter and latch are accessible by software.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 7 of 64

Event FIFO

Event FIFO write
MAP15

1

0

32-bit Timestamp Event Counter

32-bit Timestamp Latch

code
event

prescaler = 0

32-bit Seconds

32-bit Seconds

32-bit Seconds

event

event

event

32-bit Timestamp

32-bit Timestamp

32-bit Timestamp

32-bit Seconds Latch
latch timestamp

MAP14

load reset

latch latch

32-bit Seconds Register

0

1

TS event counter clk
event code $7C

32-bit Seconds Shift Register

load bit '0'
event code $70

load bit '1'
event code $71

dbus_ena

bus bit 4
distributed

sync.TS event counter reset
event code $7D

event clock
reset

16-bit prescaler

Figure 1: Event FIFO and Timestamping

Event Log
Up to 512 events with timestamping information can be stored in the event log. The log is
implemented as a ring buffer and is accessible as a memory region. Logging events can be
stopped by an event or software.

Distributed Bus and Data Transmission
The distributed bus is able to carry eight simultaneous signals sampled with the event clock rate
over the fibre optic transmission media. The distributed bus signals may be output on
programmable front panel outputs.

The distributed bus bandwidth may be shared by transmission of a configurable size data buffer
to up to 2 kbytes. When data transmission is enabled the distributed bus bandwidth is halved. The
remaining bandwidth is reserved for transmitting data with a speed up to 50 Mbytes/s (event
clock rate divide by two).

Pulse Generators
The structure of the pulse generation logic is shown in Figure 2. Three signals from the mapping
RAM control the output of the pulse: trigger, ‘set’ pulse and ‘reset’ pulse. A trigger causes the
delay counter to start counting, when the end-of-count is reached the output pulse changes to the
‘set’ state and the width counter starts counting. At the end of the width count the output pulse is
cleared. The mapping RAM signal ‘set’ and ‘reset’ cause the output to change state immediately
without any delay.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 8 of 64

Width Counter

trigger

count enable

ouput
polarity

POLx

Pulse Output
to mapping logic

Delay Counter

reset trigger

count enableenable out

set

clear

set

Map RAM
'set' pulse x

Map RAM
trigger x

event clk

Prescaler
(optional)

Master enable
SW enable

clear

Map RAM
'reset' pulse x

ena

Figure 2: Pulse Output Structure

32 bit registers are reserved for both counters and the prescaler, however, the prescaler is not
necessarily implemented for all channels and may be hard coded to 1 in case the prescaler is
omitted. Software may write 0xFFFFFFFF to these registers and read out the actual width or
hard-coded value of the register. For example if the width counter is limited to 16 bits a read will
return 0x0000FFFF after a write of 0xFFFFFFFF.

Prescalers
The Event Receiver provides a number of programmable prescalers. The frequencies are
programmable and are derived from the event clock. A special event code reset prescalers $7B
causes the prescalers to be synchronously reset, so the frequency outputs will be in same phase
across all event receivers.

Programmable Front Panel Connections
The front panel outputs are programmable: each pulse generator output, prescaler and distributed
bus bit can be mapped to any output. The mapping is shown in table below.

Table 1: Signal mapping IDs

Mapping ID Signal
0 to n-1 Pulse generator output (number n of pulse generators depends on HW and

firmware version)
n to 31 (Reserved)
32 Distributed bus bit 0 (DBUS0)
… …
39 Distributed bus bit 7 (DBUS7)
40 Prescaler 0
41 Prescaler 1
42 Prescaler 2
43 to 61 (Reserved)
62 Force output high (logic 1)
63 Force output low (logic 0)

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 9 of 64

Front Panel TTL Outputs (VME-EVR-230 and VME-EVR-230RF)
The VME-EVR-230 provides eight programmable TTL outputs in the front panel TTL0 to TTL7
whereas the number of TTL level outputs in the VME-EVR-230RF is limited to four (TTL0 to
TTL3). These outputs are capable of driving a TTL level signal into a 50 ohm ground terminated
coaxial cable. The source for these signals are determined by mapping registers which allow
selecting different types of pulse outputs, prescalers and distributed bus signals.

Front Panel Universal I/O Slots
Universal I/O slots provide different types of output with exchangeable Universal I/O modules.
Each module provides two outputs e.g. two TTL output, two NIM output or two optical outputs.
The source for these outputs is selected with mapping registers.

Two front panel Universal I/O slots have extra I/O pins to allow controlling the delay of UNIV-
LVPECL-DLY modules. For the cPCI-EVR-300 the two slots that allow UNIV-LVPECL-DLY
modules are UNIV8/9 and UNIV10/11.

An optional side-by-side front panel module for the cPCI-EVR-220 and cPCI-EVR-230 offers
three additional Universal I/O slots with a maximum of six outputs. The cPCI-EVR-300 has six
Universal I/O slots.

Front Panel CML Outputs (VME-EVR-230RF only)
Front Panel CML Outputs provide low jitter differential signals with special outputs. The outputs
can work in different configurations: pulse mode, pattern mode and frequency mode.

CML Pulse Mode
The source for these outputs is selected in a similar way than the TTL outputs using mapping
registers, however, the output logic monitors the state of this signal and distinguishes between
state low (00), rising edge (01), high state (11) and falling edge (10). Based on the state a 20 bit
pattern is sent out with a bit rate of 20 times the event clock rate.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 10 of 64

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1
0

00

01

10

11

Pattern Register for state 'low (00)'

Pattern Register for state 'falling edge (10)'

Pattern Register for state 'rising edge (01)'

Pattern Register for state 'high (11)'

CML differential
output LEMO-EPY

S
hi

ft
R

eg
is

te
r

O
pe

ra
tin

g
at

 2
0

x
E

ve
nt

 C
lo

ck
 R

at
e

Event Clock

Mapping Multiplexer
Pulse Output

Figure 3: Block Diagram of Programmable CML Outputs

• When the source for a CML output is low and was low one event clock cycle earlier

(state low), the CML output repeats the 20 bit pattern stored in pattern_00 register.
• When the source for a CML output is high and was low one event clock cycle earlier

(state rising), the CML output sends out the 20 bit pattern stored in pattern_01 register.
• When the source for a CML output is high and was high one event clock cycle earlier

(state high), the CML output repeats the 20 bit pattern stored in pattern_11 register.
• When the source for a CML output is low and was high one event clock cycle earlier

(state falling), the CML output sends out the 20 bit pattern stored in pattern_10 register.

For an event clock of 125 MHz the duration of one single CML output bit is 400 ps. These
outputs allow for producing fine grained adjustable output pulses and clock frequencies.

CML Frequency Mode
In frequency mode one can generate clocks where the clock period can be defined in steps of
1/20th part of the event clock cycle i.e. 400 ps step with an event clock of 125 MHz. There are
some limitations, however:

• Clock high time and clock low time must be ≥ 20/20th event clock period steps
• Clock high time and clock low time must be < 65536/20th event clock period steps

The clock output can be synchronized by one of the pulse generators, distributed bus signal etc.
When a rising edge of the mapped output signal is detected the frequency generator takes its

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 11 of 64

output value from the trigger level bit and the counter value from the trigger position register.
Thus one can adjust the phase of the synchronized clock in 1/20th steps of the event clock period.

Usage example: Australian synchrotron booster clock. We have following:

• Event clock of 499.654 MHz/4
• Storage ring 360 RF buckets
• Booster 217 RF buckets
• Booster and storage ring coincidence clock on DBUS7

The CML outputs are running at a rate of 20 times the event clock or 499.654 MHz * 5, thus the
booster revolution period is 217 * 5 CML bit periods. In CML frequency mode we can now set
the output period (pulse high time + pulse low time) to 217 * 5 = 1085 bits. For approximately
50% duty cycle we set the pulse high time to 542 (0x21e) and the pulse low time to 543 (0x21f).

The actual register settings required are:
Write 0x00000011 to CML Control register (CMLxENA)
Write 0x021e to CML High Period Count register (CMLxHP)
Write 0x021f to CML Low Period Count register (CMLxLP)

We also need to set the trigger from DBUS7 by setting up register FPOutMapx.

To change the generated clock phase in respect to the trigger we can select the trigger polarity by
bit CMLTL in the CML Control register and the trigger position also in the CML Control
register.

CML Pattern Mode
In pattern mode one can generate arbitrary bit patterns taking into account following:

• The pattern length is a multiple of 20 bits, where each bit is 1/20th of the event clock
period

• Maximum length of the arbitrary pattern is 20 × 2048 bits
• A pattern can be triggered from any pulse generator, distributed bus bit etc. When

triggered the pattern generator starts sending 20 bit words from the pattern memory
sequentially starting from position 0. This goes on until the pattern length set by the
samples register has been reached.

• If the pattern generator is in recycle mode the pattern continues immediately from
position 0 of the pattern memory.

• If the pattern generator is in single pattern mode, the pattern stops and the 20 bit word
from the last position of the pattern memory (2047) is sent out until the pattern generator
is triggered again.

cPCI-EVRTG-300 GTX Front Panel Outputs
All eight cPCI-EVRTG-300 front panel output are similar to the CML outputs on the VME-EVR-
230RF. The GTX Outputs provide low jitter differential signals with special outputs. The outputs
can work in different configurations: pulse mode, pattern mode and frequency mode. The
difference compared to the CML output of the VME-EVR-230RF is that instead of 20 bits per

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 12 of 64

event clock cycle the GTX outputs have 40 bits per event clock cycle doubling the resolution to
200 ps/bit at an event clock of 125 MHz.

In addition to the higher bit rate each of the GTX outputs has a programmable delay line between
the FPGA and the actual output which allows a delay range of 1024 steps of ~9 ps. The delay
value is set with registers GTX0Dly to GTX7Dly.

GTX Pulse Mode
The source for these outputs is selected in a similar way than the TTL outputs using mapping
registers, however, the output logic monitors the state of this signal and distinguishes between
state low (00), rising edge (01), high state (11) and falling edge (10). Based on the state a 40 bit
pattern is sent out with a bit rate of 40 times the event clock rate.

7 6 5 4 3 2 1 039 38 37 36 35 34 33 32

7 6 5 4 3 2 1 039 38 37 36 35 34 33 32

7 6 5 4 3 2 1 039 38 37 36 35 34 33 32

7
6

5
4

3
2

1
0

39
38

37
36

35
34

33
32

7 6 5 4 3 2 1 039 38 37 36 35 34 33 32

00

01

10

11

Pattern Register for state 'low (00)'

Pattern Register for state 'falling edge (10)'

Pattern Register for state 'rising edge (01)'

Pattern Register for state 'high (11)'

Event Clock

Mapping Multiplexer
Pulse Output

S
hi

ft
R

eg
is

te
r

O
pe

ra
tin

g
at

 4
0

x
E

ve
nt

 C
lo

ck
 R

at
e

GTX output: UNIV I/O,
LVPECL, optical SFP

Figure 4: Block Diagram of Programmable GTX Outputs

• When the source for a GTX output is low and was low one event clock cycle earlier (state

low), the GTX output repeats the 40 bit pattern stored in pattern_00 register.
• When the source for a GTX output is high and was low one event clock cycle earlier

(state rising), the GTX output sends out the 40 bit pattern stored in pattern_01 register.
• When the source for a GTX output is high and was high one event clock cycle earlier

(state high), the GTX output repeats the 40 bit pattern stored in pattern_11 register.
• When the source for a GTX output is low and was high one event clock cycle earlier

(state falling), the GTX output sends out the 40 bit pattern stored in pattern_10 register.

For an event clock of 125 MHz the duration of one single GTX output bit is 200 ps. These
outputs allow for producing fine grained adjustable output pulses and clock frequencies.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 13 of 64

GTX Frequency Mode
In frequency mode one can generate clocks where the clock period can be defined in steps of
1/40th part of the event clock cycle i.e. 200 ps step with an event clock of 125 MHz. There are
some limitations, however:

• Clock high time and clock low time must be ≥ 40/40th event clock period steps
• Clock high time and clock low time must be < 65536/40th event clock period steps

The clock output can be synchronized by one of the pulse generators, distributed bus signal etc.
When a rising edge of the mapped output signal is detected the frequency generator takes its
output value from the trigger level bit and the counter value from the trigger position register.
Thus one can adjust the phase of the synchronized clock in 1/40th steps of the event clock period.

To change the generated clock phase in respect to the trigger we can select the trigger polarity by
bit CMLTL in the CML Control register and the trigger position also in the CML Control
register.

GTX Pattern Mode
In pattern mode one can generate arbitrary bit patterns taking into account following:

• The pattern length is a multiple of 40 bits, where each bit is 1/40th of the event clock
period

• Maximum length of the arbitrary pattern is 40 × 2048 bits
• A pattern can be triggered from any pulse generator, distributed bus bit etc. When

triggered the pattern generator starts sending 40 bit words from the pattern memory
sequentially starting from position 0. This goes on until the pattern length set by the
samples register has been reached.

• If the pattern generator is in recycle mode the pattern continues immediately from
position 0 of the pattern memory.

• If the pattern generator is in single pattern mode, the pattern stops and the 40 bit word
from the last position of the pattern memory (2047) is sent out until the pattern generator
is triggered again.

GTX GUN-TX-203 Mode
The cPCI-EVRTG-300 has two SFP outputs CH1 (GTX6) and CH2 (GTX7) that can generate a
modulated signal that can be received by the Electron Gun trigger receiver GUN-RC-203. The
GUN-TX-203 Mode has been designed to operate with a RF bucket clock of 499.654 MHz and
event clock of ¼ of the RF clock.

To enable the GUN-TX-203 Mode one has to set bits GTX2MD and CMLENA in the CML/GTX
Control register for the given GTX output. The pulse output delay can be changed in quarters of
the event clock period by the GTXPH1:0 bits. For finer delay tuning the GTX delay lines may be
adjusted (registers GTX6Dly for CH1 and GTX7Dly for CH2).

The two SFP outputs share an external inhibit signal that only allows triggers when the external
inhibit signal is in a given state. To use the external inhibit function a UNIV-TTLIN-IL module
has to be mounted in Universal I/O slot UNIV0/1. To allow output pulses the inhibit signal at

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 14 of 64

UNIV0 has to be pulled low. In case of an open circuit output pulses are inhibited. It is possible
to override the inhibit input with a control register bit.

Configurable Size Data Buffer
Some applications require deterministic data transmission. The configurable size data buffer
provides a configurable size buffer that may be transmitted over the event system link. The buffer
size is configured in the Event Generator to up to 2 kbytes. The Event Receiver is able to receive
buffers of any size from 4 bytes to 2 kbytes in four byte (long word) increments.

Data reception is enabled by changing the distributed bus mode for data transmission (mode = 1
in Data Buffer Control Register). This halves the distributed bus update rate. Before a data buffer
can be received the data buffer receiver has to be enabled (write enable = 1 in control register).
This clears the checksum error flag and sets the rx_enable flag. When a data buffer has been
received the rx_enable flag is cleared and rx_complete flag is set. If the received and computed
checksums do not match the checksum error flag is set.

2 kbyte

buffer
data transmit
dual porteddistributed

bus interface
memory
access

comparison
checksum

reception
engine and

enable
disable
bufsize_words
rx_enable
rx_complete
checksum_error

Figure 5: Data Receive Buffer

The size of the data buffer transfer can be read from the control register. An interrupt may be
generated after reception of a data buffer.

Interrupt Generation
The Event Receiver has multiple interrupt sources which all have their own enable and flag bits.
The following events may be programmed to generate an interrupt:

• Receiver link state change
• Receiver violation: bit error or the loss of signal.
• Lost heartbeat: heartbeat monitor timeout.
• Write operation of an event to the event FIFO.
• Event FIFO is full.
• Data Buffer reception complete.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 15 of 64

In addition to the events listed above an interrupt can be generated from one of the pulse
generator outputs, distributed bus bits or prescalers. The pulse interrupt can be mapped in a
similar way as the front panel outputs.

External Event Input
An external hardware input is provided to be able to take an external pulse to generate an internal
event. This event will be handled as any other received event.

Programmable Reference Clock
The event receiver requires a reference clock to be able to synchronise on the incoming event
stream sent by the event generator. For flexibility a programmable reference clock is provided to
allow the use of the equipment in various applications with varying frequency requirements.

Fractional Synthesiser
The clock reference for the event receiver is generated on-board the event receiver using a
fractional synthesiser. A Micrel (http://www.micrel.com) SY87739L Protocol Transparent
Fractional-N Synthesiser with a reference clock of 24 MHz is used. The following table lists
programming bit patterns for a few frequencies.

Event Rate Configuration Bit

Pattern
Reference Output Precision

(theoretical)
499.8 MHz/5
= 99.96 MHz

0x025B41ED 99.956 MHz -40 ppm

50 MHz 0x009743AD 50.0 MHz 0
499.8 MHz/10
= 49.98 MHz

0x025B43AD 49.978 MHz -40 ppm

The event receiver reference clock is required to be in ±100 ppm range of the event generator
event clock.

Connections

cPCI-EVR-2x0 Front Panel Connections
The front panel of the Event Receiver and its optional side-by-side module is shown in Figure 6
and Figure 7.

IN
1

TX RX

IN
0

UNIV0 UNIV1 UNIV2 UNIV3

L
N

K

E
V

T

O
F

F

M
ic

ro
-R

es
ea

rc
h

P
X

I-
E

V
R

-2
20

TTL
Figure 6: Event Receiver Front Panel

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 16 of 64

UNIV4 UNIV5 UNIV6 UNIV7M
ic

ro
-R

es
ea

rc
h

P
X

I-
E

V
S

B
S

-2
20

UNIV8 UNIV9
Figure 7: Optional Side-by-side Module Front Panel

The front panel of the Event Receiver includes the following connections and status leds:

Connector / Led Style Level Description
LNK Red/Green

Led
 Red: receiver violation detected

Green: RX link OK, violation flag
cleared

EVT Red/Green
Led

 Green: link OK, flashes when event
code received
Red: Flashes on led event

TX LC optical Transmit Optical Output (TX)
RX LC optical Receiver Optical Input (RX)
TTL IN0 LEMO-EPY TTL External Event Input
TTL IN1 LEMO-EPY TTL External Event Input
UNIV0/1 Universal slot Universal Output 0/1
UNIV2/3 Universal slot Universal Output 2/3
UNIV4/5 Universal slot Universal Output 4/6
UNIV6/7 Universal slot Universal Output 6/7
UNIV8/9 Universal slot Universal Output 8/9

VME-EVR-230 and VME-EVR-230RF Front Panel Connections

The front panel of the VME-EVR-230 Event Receiver is shown in Figure 6 and VME-EVR-
230RF in Figure 9: VME-EVR-230RF Event Receiver Front PanelFigure 9 respectively.

O
U

T
3

O
U

T
2

O
U

T
6

O
U

T
7

O
U

T
4

O
U

T
5

O
U

T
0

O
U

T
1

IN
1

M
ic

ro
R

es
ea

rc
h

OFF

FAIL

ENA

RX
LINK

OUT ERR ACT

EVENT
IN

RX
FAIL RUN

10baseT 10/100 TX RX TTLTTL TTL TTL

IN
0

VME-EVR-230 TTL COMUNIV0 UNIV1 UNIV2 UNIV3
Figure 8: VME-EVR-230 Event Receiver Front Panel

O
U

T
3

O
U

T
2

O
U

T
5

+
O

U
T

5-

O
U

T
4

+
O

U
T

4-

O
U

T
0

O
U

T
1

IN
1

OFF

FAIL

ENA

RX
LINK

OUT ERR ACT

EVENT
IN

RX
FAIL RUN

10baseT 10/100 TX RX TTLTTL TTL CML

IN
0

VME-EVR-230RF CML COM

O
U

T
6

+
O

U
T

6-

CML UNIV0 UNIV1 UNIV2 UNIV3
Figure 9: VME-EVR-230RF Event Receiver Front Panel

The front panel of the Event Receiver includes the following connections and status leds:

Connector / Led Style Level Description
FAIL Red Led Module Failure/Interlock active

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 17 of 64

OFF Blue Led Module not Configured/Powered

Down
RX LINK Green Led Receiver Link Signal OK
ENA Green Led Event Receiver Enabled
EVENT IN Yellow Led Incoming Event (RX)
EVENT OUT Yellow Led Active HW output
RX FAIL Red Led Receiver Violation
ERR Red Led SY87739L reference not locked
RUN Green Led Ubicom IP2022 software running
ACT Yellow Led Ubicom IP2022 telnet connection

active
10baseT with LEDs RJ45

green Led
amber Led

10baseT 10baseT Ethernet Connection
link established
link activity

10/100 RJ45 (reserved)
TX LC optical Transmit Optical Output (TX)
RX LC optical Receiver Optical Input (RX)
TTL IN0 LEMO-EPY TTL External Event Input
TTL IN1 LEMO-EPY TTL External Event Input
TTL OUT0 LEMO-EPY TTL Programmable TTL Output 0
TTL OUT1 LEMO-EPY TTL Programmable TTL Output 1
TTL OUT2 LEMO-EPY TTL Programmable TTL Output 2
TTL OUT3 LEMO-EPY TTL Programmable TTL Output 3
TTL OUT4 LEMO-EPY TTL Programmable TTL Output 41
TTL OUT5 LEMO-EPY TTL Programmable TTL Output 5
TTL OUT6 LEMO-EPY TTL Programmable TTL Output 6
TTL OUT7 LEMO-EPY TTL Programmable TTL Output 7
CML OUT4 LEMO-EPY CML Programmable CML Output 42
CML OUT5 LEMO-EPY CML Programmable CML Output 5
CML OUT6 LEMO-EPY CML Programmable CML Output 6
UNIV0/1 Universal slot Universal Output 0/1
UNIV2/3 Universal slot Universal Output 2/3
COM RJ45 RS232 (reserved)

VME P2 User I/O Pin Configuration
The following table lists the connections to the VME P2 User I/O Pins.

Pin Signal
A1 Transition board ID0
A2 Transition board ID1
A3-A10 Ground
A11 Transition board ID2
A12 Transition board ID3
A13-A15 Ground

1 TTL outputs TTL4-TTL7 available on VME-EVR-230 only
2 CML outputs available on VME-EVR-230RF only

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 18 of 64

A16 Transition board handle switch
A17-A26 Ground
A27-A31 +5V
A32 Power control for transition board
C1 (reserved)
C2 (reserved)
C3 (reserved)
C4 (reserved)
C5 (reserved)
C6 (reserved)
C7 (reserved)
C8 (reserved)
C9 (reserved)
C10 (reserved)
C11 (reserved)
C12 Programmable transition board output 0
C13 Programmable transition board output 1
C14 Programmable transition board output 2
C15 Programmable transition board output 3
C16 Programmable transition board output 4
C17 Programmable transition board output 5
C18 Programmable transition board output 6
C19 Programmable transition board output 7
C20 Programmable transition board output 8
C21 Programmable transition board output 9
C22 Programmable transition board output 10
C23 Programmable transition board output 11
C24 Programmable transition board output 12
C25 Programmable transition board output 13
C26 Programmable transition board output 14
C27 Programmable transition board output 15
C28 (reserved)
C29 (reserved)
C30 (reserved)
C31 (reserved)
C32 (reserved)

PMC-EVR-230 Front Panel Connections
The front panel of the PMC Event Receiver is shown in Figure 10.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 19 of 64

OUT1 OUT2 OUT3 EXT.IN

FA
IL

L
IN

K
E

V
T

O
U

T

Figure 10: PMC-EVR-230 Event Receiver Front Panel

The front panel of the Event Receiver includes the following connections and status leds:

Connector / Led Style Level Description
LINK Green Led Receiver Link Signal OK
EVT Yellow Led Incoming Event (RX)
OUT Yellow Led Active HW output
FAIL Red Led Receiver Violation
TX (SFP) next to leds LC Optical 850 nm Event link Transmit
RX (SFP) next to EXT.IN LC Optical 850 nm Event link Receiver
OUT0 LEMO-EPL TTL Programmable TTL Output 0
OUT1 LEMO-EPL TTL Programmable TTL Output 1
OUT2 LEMO-EPL TTL Programmable TTL Output 2
EXT IN LEMO-EPL TTL External Event Input

PMC-EVR-230 Pn4 User I/O Pin Configuration
The following table lists the connections to the PMC Pn4 User I/O Pins and to VME P2 pins
when the module is mounted on a host with “P4V2-64ac” mapping complying VITA-35 PMC-P4
to VME-P2-Rows-A,C.

PMC Pn4 pin VME P2 Pin Signal
2 A1 Transition board ID0
4 A2 Transition board ID1

6, 8, …, 20 A3-A10 Ground
22 A11 Transition board ID2
24 A12 Transition board ID3

26, 28, 30 A13-A15 Ground
32 A16 Transition board handle switch

34, 36, …, 52 A17-A26 Ground
54, 56, …, 62 A27-A31 +5V

64 A32 Power control for transition board
1 C1 (reserved)
3 C2 (reserved)
5 C3 (reserved)
7 C4 (reserved)
9 C5 (reserved)
11 C6 (reserved)
13 C7 (reserved)
15 C8 (reserved)
17 C9 (reserved)

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 20 of 64

19 C10 (reserved)
21 C11 (reserved)
23 C12 Programmable transition board output 0
25 C13 Programmable transition board output 1
27 C14 Programmable transition board output 2
29 C15 Programmable transition board output 3
31 C16 Programmable transition board output 4
33 C17 Programmable transition board output 5
35 C18 Programmable transition board output 6
37 C19 Programmable transition board output 7
39 C20 Programmable transition board output 8
41 C21 Programmable transition board output 9
43 C22 Programmable transition board output 10
45 C23 Programmable transition board output 11
47 C24 Programmable transition board output 12
49 C25 Programmable transition board output 13
51 C26 Programmable transition board output 14
53 C27 Programmable transition board output 15
55 C28 (reserved)
57 C29 (reserved)
59 C30 (reserved)
61 C31 (reserved)
63 C32 (reserved)

cRIO-EVR-300 Front Panel Connections

Figure 11: cRIO-EVR-300 Event Receiver Front Panel

Connector / Led Style Level Description
TX (SFP) LC Optical 850 nm Event link Transmit
RX (SFP) LC Optical 850 nm Event link Receiver
ETH RJ45 10baseT/100baseTX Ethernet port
V+ Terminal +6 to +30 VDC Power supply positive

supply
GND Terminal Ground Power supply ground

cPCI-EVRTG-300 Front Panel Connections

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 21 of 64

Figure 12: cPCI-EVRTG-300 Event Receiver Front Panel

Connector / Led Style Level Description
10baseT with LEDs RJ45

green Led
amber Led

10baseT 10baseT Ethernet Connection
link established
link activity

10/100/GbE RJ45 (reserved)
LNK led 10/100/GbE link led
ACT led 10/100/GbE active led
COM RJ45 RS-232 (reserved)
TX Led (reserved)
RX Led (reserved)
UNIV0/1 Universal slot Universal Output 0/1
UNIV2/3 Universal slot Universal Output 2/3
LVPECL 0 EPG.00.302 3.3V diff. LVPECL LVPECL Output
LVPECL 1 EPG.00.302 3.3V diff. LVPECL LVPECL Output
A RGB Led (reserved)
B RGB Led (reserved)
C RGB Led (reserved)
D RGB Led (reserved)
CH 1 LC Optical 850 nm GunTX Output
CH 2 LC Optical 850 nm GunTX Output
Link TX (SFP) LC Optical 850 nm Event link Transmit
Link RX (SFP) LC Optical 850 nm Event link Receiver

cPCI-EVR-300 Front Panel Connections

Figure 13: cPCI-EVR-300 Event Receiver Front Panel

Connector / Led Style Level Description
UNIV0/1 Universal slot Universal Output 0/1
UNIV2/3 Universal slot Universal Output 2/3
UNIV4/5 Universal slot Universal Output 4/5
UNIV6/7 Universal slot Universal Output 6/7
UNIV8/9 Universal slot Universal Output 8/9
UNIV10/11 Universal slot Universal Output 10/11
USB USB (USB Serial Port, reserved)
10/100 RJ45 (10/100 Ethernet, reserved)
IN0 Lemo TTL TTL Input IN0
IN1 Lemo TTL TTL Input IN1
Link TX (SFP) LC Optical 850 nm Event link Transmit
Link RX (SFP) LC Optical 850 nm Event link Receiver

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 22 of 64

VME-EVR-230 and VME-EVR-230RF Network Interface
A 10baseT network interface is provided to upgrade the FPGA firmware and set up boot options.
It is also possible to control the module over the network interface.

Assigning an IP Address to the Module
By default the modules uses DHCP (dynamic host configuration protocol) to acquire an IP
address. In case a lease cannot be acquired the IP address set randomly in the 169.254.x.x subnet.
The board can be programmed to use a static address instead if DHCP is not available.

The module can be located looking at the lease log of the DHCP server or using a Windows tool
called Locator.exe.

Using Telnet to Configure Module
To connect to the configuration utility of the module issue the following command:

telnet 192.168.1.32 23

The latter parameter is the telnet port number and is required in Linux to prevent negotiation of
telnet parameters which the telnet server of the module is not capable of.

The telnet server responds to the following commands:

Command Description
b Show/change boot parameters, IP address etc.
d Dump 16 bytes of memory
h / ? Show Help
m <address> [<data>] Read/Write FPGA CR/CSR, Function 0
r Reset Board
s Save boot configuration & dynamic configuration values into non-

volatile memory
t Tune delay line for event clock recovery
+ Manually increase delay line delay *)
- Manually decrease delay line delay *)
u Update IP2022 software
q Quit Telnet
*) This option has been added with IP2022 software version 060309 for VME-EVR-230RF (displayed in output from

help command)

Boot Configuration (command b)
Command b displays the current boot configuration parameters of the module. The parameter
may be changed by giving a new parameter value. The following parameters are displayed:

Parameter Description
Use DHCP 0 = use static IP address, 1 = use DHCP to acquire address, net mask

etc.
IP address IP address of module

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 23 of 64

Subnet mask Subnet mask of module
Default GW Default gateway
FPGA mode FPGA configuration mode

0 – FPGA is not configured after power up
1 – FPGA configured from internal Flash memory
2 – FPGA is configured from FTP server

FTP server FTP server IP address where configuration bit file resides
Username FTP server username
Password FTP server password
FTP Filename FTP server configuration file name
Flash Filename Configuration file name on internal flash
µs divider Integer divider to get from event clock to 1MHz, e.g. 125 for

124.9135 MHz
Fractional divider
configuration word

Micrel SY87739UMI fractional divider configuration word to set
refenrence for event clock

Note that after changing parameters the parameters have to be saved to internal flash by issuing
the Save boot configuration (s) command. The changes are applied only after resetting the
module using the reset command or hardware reset/power sequencing.

Memory dump (command d)
This command dumps 16 bytes of memory starting at the given address, if the address is omitted
the previous address value is increased by 16 bytes.

The most significant byte of the address determines the function of the access:

Address Function
0x78000000 CR/CSR space access
0x7a000000 EVR registers access

To dump the start of the EVR register map issue the ‘d’ command from the telnet prompt:
VME-EVR-230RF -> d 7a000000 ↵↵↵↵
Addr 7a000000: 1005 0001 0000 0000 0000 0000 0000 0000
VME-EVR-230RF -> d ↵↵↵↵
Addr 7a000010: 0000 0000 0000 0000 0000 0000 0000 0000
VME-EVR-230RF ->

Memory modify (commands d and m)
The access size is always a short word i.e. two bytes.

To check the status register from the telnet prompt:
VME-EVR-230RF -> m 7a000000 ↵↵↵↵
Addr 7a000000 data 1005
VME-EVR-230RF ->

To clear the violation flag issue:
VME-EVR-230RF -> m 7a000000 1005 ↵↵↵↵

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 24 of 64

Addr 7a000000 data 0000
VME-EVR-230RF ->

Tuning Delay Line (command t)
The VME Event Receiver VME-EVR-230RF has to be configured for proper event clock rate and
the on-board delay line has to be tuned for the operating conditions. Before setting up the board
make sure you have an Event Generator with the correct event clock connected to the Event
Receiver. Also, let the EVR reach operating temperature (power on for 10 minutes in crate). See
previous section for setting up the event clock rate.

To start tuning issue command ‘t’ from the telnet prompt:

VME-EVR-230RF -> t ↵↵↵↵
Starting tuning...
Adjusted sampling phase to 75
Initial DCM phase -85
Fine tuned sampling phase to 78
Final DCM phase -73.
VME-EVR-230RF ->

After tuning the tuned values have to be stored in non-volatile memory:

VME-EVR-230RF -> s ↵↵↵↵
Confirm save (yes/no) ? yes ↵↵↵↵
Configuration saved.
VME-EVR-230RF ->

Upgrading IP2022 Microprocessor Software (command u)
To upgrade the Ubicom IP2022 microprocessor software download the upgrade image containing
the upgrade to the module using TFTP:

Linux
In Linux use e.g. interactive tftp:

$ tftp 192.168.1.32
tftp> bin
tftp> put upgrade.bin /fw
tftp> quit

Windows
In Windows command prompt issue the following command:

C:\> tftp –i 192.168.1.32 PUT upgrade.bin /fw

When the upgrade image has been downloaded and verified, enter at the telnet prompt following:

VME-EVR-230 -> u ↵↵↵↵
Really update firmware (yes/no) ? yes ↵↵↵↵

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 25 of 64

Self programming triggered.

The Event Receiver starts programming the new software and restarts.

Upgrading FPGA Configuration File
When the FPGA configuration file resides in internal flash memory a new file system image has
to be downloaded to the module. This is done using TFTP protocol:

Linux
In Linux use e.g. interactive tftp:

$ tftp 192.168.1.32
tftp> bin
tftp> put filesystem.bin /
tftp> quit

Windows
In Windows command prompt issue the following command:

C:\> tftp –i 192.168.1.32 PUT filesystem.bin /

Now the FPGA configuration file has been upgraded and the new configuration is loaded after
next reset/power sequencing.

Note! Due to the UDP protocol it is recommended to verify (read back and compare) the
filesystem image before restarting the module. This is done following:

Linux
In Linux use e.g. interactive tftp:

$ tftp 192.168.1.32
tftp> bin
tftp> get / verify.bin
tftp> quit
$ diff filesystem.bin verify.bin
$

If files differ you should get following message:
Binary files filesystem.bin and verify.bin differ

Windows
In Windows command prompt issue the following command:

C:\> tftp –i 192.168.1.32 GET / verify.bin
C:\> fc /b filesystem.bin verify.bin
Comparing files filesystem.bin and verify.bin
FC: no differences encountered

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 26 of 64

UDP Remote Programming Protocol
The VME-EVR can be remotely programmed using the 10baseT Ethernet interface with a
protocol over UDP (User Datagram Protocol) which runs on top of IP (Internet Protocol). The
default port for remote programming is UDP port 2000. The UDP commands are built upon the
following structure:

access_type (1 byte) status (1 byte) data (2 bytes)

address (4 bytes)
ref (4 bytes)

The first field defines the access type:

access_type Description
0x01 Read Register from module
0x02 Write and Read back Register from module

The second field tells the status of the access:

Status Description
0 Command OK
-1 Bus ERROR (Invalid read/write address)
-2 Timeout (FPGA did not respond)
-3 Invalid command

The access size is always a short word i.e. two bytes. The most significant byte of the address
determines the function of the access:

Address Function
0x78000000 CR/CSR space access
0x7a000000 EVR registers access

Read Access (Type 0x01)
The host sends a UDP packet to port 2000 of the VME-EVR with the following contents:

access_type (1 byte)

0x01
status (1 byte)

0x00
data (2 bytes)

0x0000
address (4 bytes)

0x7a000000 (Control and Status register Function 0 address)
ref (4 bytes)
0x00000000

If the read access is successful the VME-EVR replies to the same host and port the message came
from with the following packet:

access_type (1 byte)

0x01
status (1 byte)

0x00
data (2 bytes)

0x0032
address (4 bytes)

0x7a000000 (Control and Status register Function 0 address)

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 27 of 64

ref (4 bytes)
0x00000000

Write Access (Type 0x02)
The host sends a UDP packet to port 2000 of the VME-EVR with the following contents:

access_type (1 byte)

0x02
status (1 byte)

0x00
data (2 bytes)

0x0001
address (4 bytes)

0x7a000002 (Mapping RAM Address register Function 0 address)
ref (4 bytes)
0x00000000

If the write access is successful the VME-EVR replies to the same host and port the message
came from with the following packet:

access_type (1 byte)

0x02
status (1 byte)

0x00
data (2 bytes)

0x0001
address (4 bytes)

0x80000000 (Mapping RAM Address register Function 0 address)
ref (4 bytes)
0x00000000

Notice that in the reply message the data returned really is the data read from the address
specified in the address field so one can verify that the data really was written ok.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 28 of 64

cRIO-EVR-300

Connections
The cRIO-EVR connects to the CompactRIO backplane through a DSUB connector. The pin
usage is as follows:

cRIO (DSUB) signal EVR signal Description
IDSEL UART RXD Asynchronous serial data receive
USER0 UNIV3 Output
USER1 UNIV2 Output
USER2 UNIV1 Output
USER3 UNIV0 Output
USER4 UNIV3 Input
USER5 UNIV2 Input
USER6 UNIV1 Input
USER7 UNIV0 Input
USER8 UART TXD Asynchronous serial data transmit

The serial interface runs with a baud rate of 115200 baud, 8 bit data, one stop bit, no parity and
no handshaking.

Boot Monitor
The boot monitor is started in case the cRIO-EVR receives a ‘@’ character immediately after it
has been powered up. The boot monitor can be used to flash the cRIO-EVR firmware. It supports
the following commands:

Command Description
EPI Erase FPGA Primary configuration Image

Outputs ‘+’ for each successful sector erase
EGI Erase FPGA Golden configuration Image

Outputs ‘+’ for each successful sector erase
L Load S3-records into RAM

‘@’ to stop loading records
V Verify S3-records with RAM

‘@’ to stop verifying records
PPI Program FPGA Primary Image from RAM to flash.

Outputs ‘+’ for each successful page program
PGI Program FPGA Golden Image from RAM to flash.

Outputs ‘+’ for each successful page program
RP Load FPGA Primary Image from flash into RAM
RG Load FPGA Golden Image from flash into RAM
. Exit Boot Monitor

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 29 of 64

Firmware Upgrade (on Linux)
The configuration flash memory of the cRIO-EVR holds two firmware images: a primary image
and a golden image. The primary image is normally loaded and upgraded. If the primary image
for gets corrupted because of a programming error or power failure during upgrade the golden
image gets loaded which will allow retrying the firmware upgrade of the primary image.

This upgrade procedure will require the cRIO-EVR-UNIVIO –board connected to the cRIO-
EVR. The firmware can be upgraded on a CompactRIO system using a tool written in LabView.

Connect a USB cable to the cRIO-EVR-UNIVIO USB connector and start your favourite
terminal program with 115200 baud, 8 bit data, one stop bit, no parity and no handshaking.

1. Keep the ‘@’ key pressed, power up the cRIO-EVR and wait until the cRIO-EVR
responds with periods ‘.’

2. Enter the command ‘EPI’ (the characters are not echoed back). The cRIO-EVR will
respond with a number of ‘+’ one for each erased sector and a final ‘.’ when complete.

3. Enter the command ‘L’
4. From a command window send the new firmware image to the serial port e.g.

dd if=firmware_file.exo of=/dev/ttyusb0

5. When the previous operation is complete enter ‘@’ on the terminal to stop loading S-
records. The cRIO-EVR will responds with the number of S-records received and the
number of checksum errors, two concatenated 32-bit hexadecimal numbers

6. Enter command ‘PPI’ to program the firmware image from RAM to flash. The cRIO-
EVR will output lots of ‘+’, one for each successful page program and a final ‘.’

7. The following steps are optional: Enter command ‘RP’ to refresh the RAM image from
flash.

8. Enter command ‘V’
9. From a command window send the new firmware image to the serial port e.g.

dd if=firmware_file.exo of=/dev/ttyusb0

10. When the previous operation is complete enter ‘@’ on the terminal to stop loading S-
records. The cRIO-EVR will responds with the number of S-records received and the
number of checksum errors, two concatenated 32-bit hexadecimal numbers

Programming Details

VME CR/CSR Support
The VME Event Receiver modules provides CR/CSR Support as specified in the VME64x
specification. The CR/CSR Base Address Register is determined after reset by the inverted state
of VME64x P1 connector signal pins GA4*-GA0*. In case the parity signal GAP* does not
match the GAx* pins the CR/CSR Base Address Register is loaded with the value 0xf8 which
corresponds to slot number 31.

Note: the boards can be used in standard VME crates where geographical pins do not exist, in this
case the user may either insert jumpers to set the geographical address or use the default setting
when the board’s CR/CSR base address will be set to 0xf8.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 30 of 64

After power up or reset the board responds only to CR/CSR accesses with its geographical
address. Prior to accessing Event Receiver functions the board has to be configured by accessing
the boards CSR space.

The Configuration ROM (CR) contains information about manufacturer, board ID etc. to identify
boards plugged in different VME slots. The following table lists the required field to locate an
Event Receiver module.

CR address Register VME-EVR-230RF
0x27, 0x2B, 0x2F Manufacturer’s ID (IEEE

OUI)
0x000EB2

0x33, 0x37, 0x3B, 0x3F Board ID 0x455246E6

For convenience functions are provided to locate VME64x capable boards in the VME crate.

STATUS vmeCRFindBoard(int slot, UINT32 ieee_oui, UI NT32 board_id,
 int *p_slot);

To locate the first Event Receiver in the crate starting from slot 1, the function has to be called
following:

#include “vme64x_cr.h”
int slot = 1;
int slot_evr;
vmeCRFindBoard(slot, MRF_IEEE_OUI, MRF_EVR200RF_BID , &slot_evr);

If this function returns OK, an Event Receiver board was found in slot slot_evr .

Event Receiver Function 0,1 and 2 Registers
The Event Receiver specific register are accessed via Function 0 and Function 1 as specified in
the VME64x specification. The access size for Function 0 has been limited to 2 kbytes (0x0800)
so not all EVR registers are accessible through this Function. The access size for Functions 1 and
2 is 256 kbytes, so this function should not be used for A16 access. Contrary to the VME64x
specification the address/address modifier compare logic does not distinguish between privileged
and non-privileged accesses and accepts both.

To enable a Function, the address decoder compare register for the Function in CSR space has to
be programmed. For convenience a function to perform this is provided, too:

STATUS vmeCSRWriteADER(int slot, int func, UINT32 a der);

To configure Function 0 of a Event Receiver board in slot 3 to respond to A16 accesses at the
address range 0x1800-0x1FFF the function has to be called with following values:

vmeCSRWriteADER(3, 0, 0x18A4);

ADER contents are composed of the address mask and address modifier, the above is the same
as:

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 31 of 64

vmeCSRWriteADER(3, 0, (slot << 11) | (VME_AM_SUP_SH ORT_IO << 2));

To get the memory mapped pointer to the configured Function 0 registers on the Event Receiver
board the following VxWorks function has to be called:

MrfEvrStruct *pEvr;
sysBusToLocalAdrs(VME_AM_SUP_SHORT_IO, (char *) (sl ot << 11),
 (void *) pEvr);

Note: using the data transmission capability requires more than 4 kbytes, so using function 1 with
addressing mode A24 is suggested, following:

vmeCSRWriteADER(3, 1, (slot << 19) | (VME_AM_STD_US R_DATA << 2));
MrfEvrStruct *pEvr;
sysBusToLocalAdrs(VME_AM_STD_USR_DATA, (char *) (sl ot << 19),
 (void *) pEvr);

Register Map

Address Register Type Description
0x000 Status UINT32 Status Register
0x004 Control UINT32 Control Register
0x008 IrqFlag UINT32 Interrupt Flag Register
0x00C IrqEnable UINT32 Interrupt Enable Register
0x010 PulseIrqMap UINT32 Mapping register for pulse interrupt
0x020 DataBufCtrl UINT32 Data Buffer Control and Status Register
0x024 TxDataBufCtrl UINT32 TX Data Buffer Control and Status Register
0x02C FWVersion UINT32 Firmware Version Register
0x040 EvCntPresc UINT32 Event Counter Prescaler
0x04C UsecDivider UINT32 Divider to get from Event Clock to 1 MHz
0x050 ClockControl UINT32 Event Clock Control Register
0x05C SecSR UINT32 Seconds Shift Register
0x060 SecCounter UINT32 Timestamp Seconds Counter
0x064 EventCounter UINT32 Timestamp Event Counter
0x068 SecLatch UINT32 Timestamp Seconds Counter Latch
0x06C EvCntLatch UINT32 Timestamp Event Counter Latch
0x070 EvFIFOSec UINT32 Event FIFO Seconds Register
0x074 EvFIFOEvCnt UINT32 Event FIFO Event Counter Register
0x078 EvFIFOCode UINT16 Event FIFO Event Code Register
0x07C LogStatus UINT32 Event Log Status Register
0x080 FracDiv UINT32 Micrel SY87739L Fractional Divider Configuration

Word
0x088 RxInitPS UINT32 Reserved for Initial value for RF recovery DCM

phase shift (VME-EVR-230RF)
0x090 GPIODir UINT32 Front Panel UnivIO GPIO signal direction
0x094 GPIOIn UINT32 Front Panel UnivIO GPIO input register

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 32 of 64

0x098 GPIOOut UINT32 Front Panel UnivIO GPIO output register
0x0A0 SPIData UINT32 SPI Data Register
0x0A4 SPIControl UINT32 SPI Control Register
0x100 Prescaler_0 UINT32 Prescaler 0 Divider
0x104 Prescaler_1 UINT32 Prescaler 1 Divider
0x108 Prescaler_2 UINT32 Prescaler 2 Divider
0x200 Pulse0Ctrl UINT32 Pulse 0 Control Register
0x204 Pulse0Presc UINT32 Pulse 0 Prescaler Register
0x208 Pulse0Delay UINT32 Pulse 0 Delay Register
0x20C Pulse0Width UINT32 Pulse 0 Width Register
0x210 Pulse 1 Registers
0x220 Pulse 2 Registers
… … … …
0x2F0 Pulse 15 Registers
0x400 FPOutMap0 UINT16 Front Panel Output 0 Map Register
0x402 FPOutMap1 UINT16 Front Panel Output 1 Map Register
0x404 FPOutMap2 UINT16 Front Panel Output 2 Map Register
0x406 FPOutMap3 UINT16 Front Panel Output 3 Map Register
0x408 FPOutMap4 UINT16 Front Panel Output 4 Map Register
0x40A FPOutMap5 UINT16 Front Panel Output 5 Map Register
0x40C FPOutMap6 UINT16 Front Panel Output 6 Map Register
0x40E FPOutMap7 UINT16 Front Panel Output 7 Map Register
0x440 UnivOutMap0 UINT16 Front Panel Universal Output 0 Map Register
0x442 UnivOutMap1 UINT16 Front Panel Universal Output 1 Map Register
0x444 UnivOutMap2 UINT16 Front Panel Universal Output 2 Map Register
0x446 UnivOutMap3 UINT16 Front Panel Universal Output 3 Map Register
0x448 UnivOutMap4 UINT16 Front Panel Universal Output 4 Map Register
0x44A UnivOutMap5 UINT16 Front Panel Universal Output 5 Map Register
0x44C UnivOutMap6 UINT16 Front Panel Universal Output 6 Map Register
0x44E UnivOutMap7 UINT16 Front Panel Universal Output 7 Map Register
0x450 UnivOutMap8 UINT16 Front Panel Universal Output 8 Map Register
0x452 UnivOutMap9 UINT16 Front Panel Universal Output 9 Map Register
0x480 TBOutMap0 UINT16 Transition Board Output 0 Map Register
0x482 TBOutMap1 UINT16 Transition Board Output 1 Map Register
0x484 TBOutMap2 UINT16 Transition Board Output 2 Map Register
0x486 TBOutMap3 UINT16 Transition Board Output 3 Map Register
0x488 TBOutMap4 UINT16 Transition Board Output 4 Map Register
0x48A TBOutMap5 UINT16 Transition Board Output 5 Map Register
0x48C TBOutMap6 UINT16 Transition Board Output 6 Map Register
0x48E TBOutMap7 UINT16 Transition Board Output 7 Map Register
0x490 TBOutMap8 UINT16 Transition Board Output 8 Map Register
0x492 TBOutMap9 UINT16 Transition Board Output 9 Map Register
0x494 TBOutMap10 UINT16 Transition Board Output 10 Map Register
0x496 TBOutMap11 UINT16 Transition Board Output 11 Map Register
0x498 TBOutMap12 UINT16 Transition Board Output 12 Map Register

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 33 of 64

0x49A TBOutMap13 UINT16 Transition Board Output 13 Map Register
0x49C TBOutMap14 UINT16 Transition Board Output 14 Map Register
0x49E TBOutMap15 UINT16 Transition Board Output 15 Map Register
0x4A0 TBOutMap16 UINT16 Transition Board Output 16 Map Register
0x4A2 TBOutMap17 UINT16 Transition Board Output 17 Map Register
0x4A4 TBOutMap18 UINT16 Transition Board Output 18 Map Register
0x4A6 TBOutMap19 UINT16 Transition Board Output 19 Map Register
0x4A8 TBOutMap20 UINT16 Transition Board Output 20 Map Register
0x4AA TBOutMap21 UINT16 Transition Board Output 21 Map Register
0x4AC TBOutMap22 UINT16 Transition Board Output 22 Map Register
0x4AE TBOutMap23 UINT16 Transition Board Output 23 Map Register
0x4B0 TBOutMap24 UINT16 Transition Board Output 24 Map Register
0x4B2 TBOutMap25 UINT16 Transition Board Output 25 Map Register
0x4B4 TBOutMap26 UINT16 Transition Board Output 26 Map Register
0x4B6 TBOutMap27 UINT16 Transition Board Output 27 Map Register
0x4B8 TBOutMap28 UINT16 Transition Board Output 28 Map Register
0x4BA TBOutMap29 UINT16 Transition Board Output 29 Map Register
0x4BC TBOutMap30 UINT16 Transition Board Output 30 Map Register
0x4BE TBOutMap31 UINT16 Transition Board Output 31 Map Register
0x500 FPInMap0 UINT32 Front Panel Input 0 Mapping Register
0x504 FPInMap1 UINT32 Front Panel Input 1 Mapping Register
0x580 GTX0Dly UINT32 GTX Output 0 Fine Delay Register
0x584 GTX1Dly UINT32 GTX Output 1 Fine Delay Register
0x588 GTX2Dly UINT32 GTX Output 2 Fine Delay Register
0x58C GTX3Dly UINT32 GTX Output 3 Fine Delay Register
0x590 GTX4Dly UINT32 GTX Output 4 Fine Delay Register
0x594 GTX5Dly UINT32 GTX Output 5 Fine Delay Register
0x598 GTX6Dly UINT32 GTX Output 6 Fine Delay Register
0x59C GTX7Dly UINT32 GTX Output 7 Fine Delay Register
0x600 CML4Pat00 UINT32 20 bit output pattern for state low
0x604 CML4Pat01 UINT32 20 bit output pattern for state rising edge
0x608 CML4Pat10 UINT32 20 bit output pattern for state falling edge
0x60C CML4Pat11 UINT32 20 bit output pattern for state high
0x610 CML4Ena

GTX0Ctrl
UINT32 CML 4 Output Control Register

0x614 CML4HP
GTX0HP

UINT16 CML 4 Output High Period Count

0x616 CML4LP
GTX0LP

UINT16 CML 4 Output Low Period Count

0x618 CML4Samp
GTX0Samp

UINT32 CML 4 Output Number of 20 bit word patterns
GTX0 Output Number of 40 bit word patterns

0x620 CML5Pat00 UINT32 20 bit output pattern for state low
0x624 CML5Pat01 UINT32 20 bit output pattern for state rising edge
0x628 CML5Pat10 UINT32 20 bit output pattern for state falling edge
0x62C CML5Pat11 UINT32 20 bit output pattern for state high

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 34 of 64

0x630 CML5Ena

GTX1Ctrl
UINT32 CML 5 Output Control Register

0x634 CML5HP
GTX1HP

UINT16 CML 5 Output High Period Count

0x636 CML5LP
GTX1LP

UINT16 CML 5 Output Low Period Count

0x638 CML5Samp
GTX1Samp

UINT32 CML 5 Output Number of 20 bit word patterns
GTX1 Output Number of 40 bit word patterns

0x640 CML6Pat00 UINT32 20 bit output pattern for state low
0x644 CML6Pat01 UINT32 20 bit output pattern for state rising edge
0x648 CML6Pat10 UINT32 20 bit output pattern for state falling edge
0x64C CML6Pat11 UINT32 20 bit output pattern for state high
0x650 CML6Ena

GTX2Ctrl
UINT32 CML 6 Output Control Register

0x654 CML6HP
GTX2HP

UINT16 CML 6 Output High Period Count

0x656 CML6LP
GTX2LP

UINT16 CML 6 Output Low Period Count

0x658 CML6Samp
GTX2Samp

UINT32 CML 6 Output Number of 20 bit word patterns
GTX2 Output Number of 40 bit word patterns

0x670 GTX3Ctrl UINT32 GTX3 Output Control Register
0x674 GTX3HP UINT16 GTX3 Output High Period Count
0x676 GTX3LP UINT16 GTX3 Output Low Period Count
0x678 GTX3Samp UINT32 GTX3 Output Number of 40 bit word patterns
0x690 GTX4Ctrl UINT32 GTX4 Output Control Register
0x694 GTX4HP UINT16 GTX4 Output High Period Count
0x696 GTX4LP UINT16 GTX4 Output Low Period Count
0x698 GTX4Samp UINT32 GTX4 Output Number of 40 bit word patterns
0x6B0 GTX5Ctrl UINT32 GTX5 Output Control Register
0x6B4 GTX5HP UINT16 GTX5 Output High Period Count
0x6B6 GTX5LP UINT16 GTX5 Output Low Period Count
0x6B8 GTX5Samp UINT32 GTX5 Output Number of 40 bit word patterns
0x6D0 GTX6Ctrl UINT32 GTX6 Output Control Register
0x6D4 GTX6HP UINT16 GTX6 Output High Period Count
0x6D6 GTX6LP UINT16 GTX6 Output Low Period Count
0x6D8 GTX6Samp UINT32 GTX6 Output Number of 40 bit word patterns
0x6E0 GTX7Ctrl UINT32 GTX7 Output Control Register
0x6E4 GTX7HP UINT16 GTX7 Output High Period Count
0x6E6 GTX7LP UINT16 GTX7 Output Low Period Count
0x6E8 GTX7Samp UINT32 GTX7 Output Number of 40 bit word patterns
0x800 –
0xFFF

DataBuf Data Buffer Receive Memory

0x1000 –
0x17FF

 Diagnostics counters

0x1800 – TxDataBuf Data Buffer Transmit Memory

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 35 of 64

0x1FFF
0x2000 –
0x3FFF

EventLog 512 x 16 byte position Event Log

0x4000 –
0x5FFF

MapRam1 Event Mapping RAM 1

0x6000 –
0x7FFF

MapRam2 Event Mapping RAM 2

0x8000 –
0x80FF

configROM

0x8100 –
0x81FF

scratchRAM

0x8200 –
0x82FF

SFPEEPROM SFP Transceiver EEPROM contents (SFP address
0xA0)

0x8300 –
0x83FF

SFPDIAG SFP Transceiver diagnostics (SFP address 0xA2)

0x20000 –
0x23FFF

CML4PMEM
GTX0MEM

 Pattern memory:
8k bytes CML output 4 (VME-EVR-230RF)
16k bytes GTX output 0 (cPCI-EVRTG-300)

0x24000 –
0x27FFF

CML5PMEM
GTX1MEM

 Pattern memory:
8k bytes CML output 5 (VME-EVR-230RF)
16k bytes GTX output 1 (cPCI-EVRTG-300)

0x28000 –
0x2BFFF

CML6PMEM
GTX2MEM

 Pattern memory:
8k bytes CML output 6 (VME-EVR-230RF)
16k bytes GTX output 2 (cPCI-EVRTG-300)

0x2C000 –
0x2FFFF

GTX3MEM Pattern memory:
16k bytes GTX output 3 (cPCI-EVRTG-300)

0x30000 –
0x33FFF

GTX4MEM Pattern memory:
16k bytes GTX output 4 (cPCI-EVRTG-300)

0x34000 –
0x37FFF

GTX5MEM Pattern memory:
16k bytes GTX output 5 (cPCI-EVRTG-300)

0x38000 –
0x3BFFF

GTX6MEM Pattern memory:
16k bytes GTX output 6 (cPCI-EVRTG-300)

0x3C000 –
0x3FFFF

GTX7MEM Pattern memory:
16k bytes GTX output 7 (cPCI-EVRTG-300)

Status Register
address bit 31 bit 30 bit 29 Bit 28 bit 27 bit 26 bit 25 bit 24
0x000 DBUS7 DBUS6 DBUS5 DBUS4 DBUS3 DBUS2 DBUS1 DBUS0

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x001 LEGVIO

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 36 of 64

0x002

address bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0
0x003 SFPMOD LINK FIFOSTP

Bit Function
DBUS7 Read status of DBUS bit 7
DBUS6 Read status of DBUS bit 6
DBUS5 Read status of DBUS bit 5
DBUS4 Read status of DBUS bit 4
DBUS3 Read status of DBUS bit 3
DBUS2 Read status of DBUS bit 2
DBUS1 Read status of DBUS bit 1
DBUS0 Read status of DBUS bit 0
LEGVIO Legacy VIO (series 100, 200 and 230)
SFPMOD SFP module status:

‘0’ – plugged in
‘1’ – no module installed

LINK Link status:
‘0’ – link down
‘1’ – link up

FIFOSTP Event FIFO stopped flag

Control Register
address bit 31 bit 30 bit 29 bit 28 bit 27 Obit 26 bit 25 bit 24
0x004 EVREN EVFWD TXLP RXLP OUTEN SRST LEMDE GTXIO

address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x006 TSDBUS RSTS LTS MAPEN MAPRS

address bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0
0x007 LOGRS LOGEN LOGDIS LOGSE RSFIFO

Bit Function
EVREN Event Receiver Master enable
TXLP Transmitter loopback:

0 – Receive signal from SFP transceiver (normal operation)
1 – Loopback EVR TX into EVR RX

RXLP Receiver loopback:
0 – Transmit signal from EVR on SFP transceiver TX
1 – Loopback SFP RX on SFP TX

OUTEN Output enable for FPGA external components (cPCI-EVRTG-300)
0 – disable delay line outputs
1 – enable delay line outputs

SRST Soft reset IP
LEMDE Little endian mode (cPCI-EVR-300)

0 – PCI core in big endian mode (power up default)

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 37 of 64

1 – PCI core in little endian mode
GTXIO GUN-TX output hardware inhibit override

0 – honor hardware inhibit signal (default)
1 – inhibit override, don’t care about hardware inhibit input state

TSDBUS Use timestamp counter clock on DBUS4
RSTS Reset Timestamp. Write 1 to reset timestamp event counter and timestamp

latch.
LTS Latch Timestamp: Write 1 to latch timestamp from timestamp event

counter to timestamp latch.
MAPEN Event mapping RAM enable.
MAPRS Mapping RAM select bit for event decoding:

0 – select mapping RAM 1
1 – select mapping RAM 2.

LOGRS Reset Event Log. Write 1 to reset log.
LOGEN Enable Event Log. Write 1 to (re)enable event log.
LOGDIS Disable Event Log. Write 1 to disable event log.
LOGSE Log Stop Event Enable.
RSFIFO Reset Event FIFO. Write 1 to clear event FIFO.

Interrupt Flag Register
address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x008

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0
0x00b IFLINK IFDBUF IFHW IFEV IFHB IFFF IFVIO

Bit Function
IFLINK Link state change interrupt flag
IFDBUF Data buffer flag
IFHW Hardware interrupt flag (mapped signal)
IFEV Event interrupt flag
IFHB Heartbeat interrupt flag
IFFF Event FIFO full flag
IFVIO Receiver violation flag

Interrupt Enable Register
address Bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x00c IRQEN PCIIE

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0
0x00f IELINK IEDBUF IEHW IEEV IEHB IEFF IEVIO

Bit Function
IRQEN Master interrupt enable:

0 – disable all interrupts
1 – allow interrupts

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 38 of 64

PCIIE PCI core interrupt enable (cPCI-EVR-300)
This bit is used by the low level driver to disable further interrupts before
the first interrupt has been handled in user space

IELINK Link state change interrupt flag
IEDBUF Data buffer interrupt enable
IEHW Hardware interrupt enable (mapped signal)
IEEV Event interrupt enable
IEHB Heartbeat interrupt enable
IEFF Event FIFO full interrupt enable
IEVIO Receiver violation interrupt enable

Hardware Interrupt Mapping Register
address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0
0x013 Mapping ID (see Table 1 for mapping IDs)

Receive Data Buffer Control and Status Register
address Bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x022 DBRX/

DBENA
DBRDY/
DBDIS

DBCS DBEN RXSIZE(11:8)

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x023 RXSIZE(7:0)

Bit Function
DBRX Data Buffer Receiving (read-only)
DBENA Set-up for Single Reception (write ‘1’ to set-up)
DBRDY Data Buffer Transmit Complete / Interrupt Flag
DBDIS Stop Reception (write ‘1’ to stop/disable)
DBCS Data Buffer Checksum Error (read-only)

Flag is cleared by writing ‘1’ to DBRX or DBRDY or disabling
data buffer

DBEN Data Buffer Enable Data Buffer Mode
‘0’ – Distributed bus not shared with data transmission, full speed
distributed bus
‘1’ – Distributed bus shared with data transmission, half speed
distributed bus

RXSIZE Data Buffer Received Buffer Size (read-only)

Transmit Data Buffer Control Register
address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x025 TXCPT TXRUN TRIG ENA MODE

address bit 15 Bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x026 DTSZ(10:8)

address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 39 of 64

0x027 DTSZ(7:2) 0 0

Bits Function
TXCPT Data Buffer Transmission Complete
TXRUN Data Buffer Transmission Running – set when data transmission has

been triggered and has not been completed yet
TRIG Data Buffer Trigger Transmission

Write ‘1’ to start transmission of data in buffer
ENA Data Buffer Transmission enable

‘0’ – data transmission engine disabled
‘1’ – data transmission engine enabled

MODE Distributed bus sharing mode
‘0’ – distributed bus not shared with data transmission
‘1’ – distributed bus shared with data transmission

DTSZ(10:8) Data Transfer size 4 bytes to 2k in four byte increments

FPGA Firmware Version Register
address bit 31 bit 27 bit 26 bit 24
0x02C EVR = 0x1 Form Factor

address bit 23 bit 8
0x02D Reserved

address bit 7 bit 0
0x02F Version ID

Bits Function
Form Factor 0 – CompactPCI 3U

1 – PMC
2 – VME64x
3 – CompactRIO
4 – CompactPCI 6U

Event Counter Clock Prescaler Register
address bit 15 bit 0
0x042 Timestamp Event Counter Clock Prescaler Register

Microsecond Divider Register
address bit 15 bit 0
0x04e Rounded integer value of 1 µs * event clock

For 100 MHz event clock this register should read 100, for 50 MHz event clock this register
should read 50. This value is used e.g. for the heartbeat timeout.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 40 of 64

Clock Control Register
address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
0x052 RECDCM

RUN
RECDCM

INITDONE
RECDCM
PSDONE

EVDCM
STOPPED

EVDCM
LOCKED

EVDCM
PSDONE

CGLOCK RECDCM
PSDEC

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x053 RECDCM

PSINC
RECDCM

RES
EVDCM
PSDEC

EVDCM
PSINC

EVDCM
SRUN

EVDCM
SRES

EVDCM
RES

EVCLKSEL

Bit Function
CGLOCK Micrel SY87739L locked (read-only)
Other bits n/a on cPCI-EVR

Seconds Shift Register
address bit 31 bit 0
0x05c Seconds Shift Register (read-only)

Seconds Counter Register
address bit 31 bit 0
0x060 Seconds Counter Register (read-only)

Timestamp Event Counter Register
address bit 31 bit 0
0x064 Timestamp Event Counter Register (read-only)

Seconds Latch Register
address bit 31 bit 0
0x068 Seconds Latch Register (read-only)

Timestamp Event Latch Register
address bit 31 bit 0
0x06c Timestamp Event Latch Register (read-only)

FIFO Seconds Register
address bit 31 bit 0
0x070 FIFO Seconds Register (read-only)

FIFO Timestamp Register
address bit 31 bit 0
0x074 FIFO Timestamp Register (read-only)

FIFO Event Register
address bit 7 bit 0
0x07b FIFO Event Code Register (read-only)

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 41 of 64

Note that reading the FIFO event code registers pulls the event code and timestamp/seconds value
from the FIFO for access. The correct order to read an event from FIFO is to first read the event
code register and after this the timestamp/seconds registers in any order. Every read access to the
FIFO event register pulls a new event from the FIFO if it is not empty.

Event Log Status Register
address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x07C LOGOV

address bit 15 bit 9 bit 8 bit 0
0x07E Log writing pointer

SY87739L Fractional Divider Configuration Word
address bit 31 bit 0
0x080 SY87739L Fractional Divider Configuration Word

Configuration Word Frequency with 24 MHz reference oscillator
0x00DE816D 125 MHz
0x00FE816D 124.95 MHz
0x0C928166 124.908 MHz
0x018741AD 119 MHz
0x072F01AD 114.24 MHz
0x049E81AD 106.25 MHz
0x008201AD 100 MHz
0x025B41ED 99.956 MHz
0x0187422D 89.25 MHz
0x0082822D 81 MHz
0x0106822D 80 MHz
0x019E822D 78.900 MHz
0x018742AD 71.4 MHz
0x0C9282A6 62.454 MHz
0x009743AD 50 MHz
0x025B43AD 49.978 MHz
0x0176C36D 49.965 MHz

Prescaler 0 Register
address Bit 15 bit 0
0x102 Prescaler 0 Register

Prescaler 1 Register
address Bit 15 bit 0
0x106 Prescaler 1 Register

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 42 of 64

Prescaler 2 Register
address Bit 15 bit 0
0x10a Prescaler 2 Register

Pulse Generator Registers
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0x203 PxOUT PxSWS PxSWR PxPOL PxMRE PxMSE PxMTE PxENA

address bit 31 bit 0
0x204 Pulse Generator Prescaler Register

address bit 31 bit 0
0x208 Pulse Generator Delay Register

address bit 31 bit 0
0x20C Pulse Generator Width Register

Note: addresses shown above are for pulse generator 0.

bit Function
PxOUT Pulse Generator Output (read-only)
PxSWS Pulse Generator Software Set
PxSWC Pulse Generator Software Reset
PxPOL Pulse Generator Output Polarity

0 – normal polarity
1 – inverted polarity

PxMRE Pulse Generator Event Mapping RAM Reset Event Enable
0 – Reset events disabled
1 – Mapped Reset Events reset pulse generator output

PxMSE Pulse Generator Event Mapping RAM Set Event Enable
0 – Set events disabled
1 – Mapped Set Events set pulse generator output

PxMTE Pulse Generator Event Mapping RAM Trigger Event Enable
0 – Event Triggers disabled
1 – Mapped Trigger Events trigger pulse generator

PxENA Pulse Generator Enable
0 – generator disabled
1 – generator enabled

Front Panel Output Mapping Registers
address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0
0x401 Front panel OUT0 Mapping ID (see Table 1 for mapping IDs)
0x403 Front panel OUT1 Mapping ID
0x405 Front panel OUT2 Mapping ID
0x407 Front panel OUT3 Mapping ID
0x409 Front panel OUT4 Mapping ID
0x40B Front panel OUT5 Mapping ID

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 43 of 64

0x40D Front panel OUT6 Mapping ID
0x40F Front panel OUT7 Mapping ID

Notes:
cPCI-EVR does not have any Front panel outputs.
PMC-EVR has three front panel outputs OUT0 to OUT2.
VME-EVR-230 has eight Front panel outputs OUT0 to OUT7.
VME-EVR-230RF has seven Front panel outputs OUT0 to OUT3 (TTL level), OUT4 to OUT6 CML level (see section about CML
outputs for details).

Universal I/O Output Mapping Registers
address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0
0x441 Universal I/O UNIV0 Mapping ID (see Table 1 for mapping IDs)
0x443 Universal I/O UNIV1 Mapping ID
0x445 Universal I/O UNIV2 Mapping ID
0x447 Universal I/O UNIV3 Mapping ID
0x449 Universal I/O UNIV4 Mapping ID
0x44b Universal I/O UNIV5 Mapping ID
0x44d Universal I/O UNIV6 Mapping ID
0x44f Universal I/O UNIV7 Mapping ID
0x451 Universal I/O UNIV8 Mapping ID
0x453 Universal I/O UNIV9 Mapping ID
0x453 Universal I/O UNIV10 Mapping ID
0x453 Universal I/O UNIV11 Mapping ID

Notes:
cPCI-EVR-220/230 has two Universal I/O slots (four outputs UNIV0 to UNIV3). An optional side-by-side module provides three
more slots (six additional outputs UNIV4 to UNIV9).
PMC-EVR does not have any Universal I/O slots.
VME-EVR has two Universal I/O slots (four outputs UNIV0 to UNIV3).
cPCI-EVR-300 has six Universal I/O slots (twelve outputs UNIV0 to UNIV11).

Transition Board Output Mapping Registers
address Bit 7 bit 6 bit 5 Bit 4 bit 3 bit 2 bit 1 bit 0
0x481 Transition Board Output TBOUT0 Mapping ID (see Table 1 for mapping IDs)
0x483 Transition Board Output TBOUT1 Mapping ID
0x485 Transition Board Output TBOUT2 Mapping ID

… …
Notes:
cPCI-EVRs and cRIO-EVR do not have any Transition board outputs.

Front Panel Input Mapping Registers
address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x500 EXTLV0 BCKLE0 EXTLE0 EXTED0 BCKEV0 EXTEV0

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x501 T0DB7 T0DB6 T0DB5 T0DB4 T0DB3 T0DB2 T0DB1 T0DB0

address bit 15 bit 8
0x502 Backward Event Code Register for front panel input 0

address bit 7 bit 0
0x503 External Event Code Register for front panel input 0

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 44 of 64

address bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24
0x504 EXTLV1 BCKLE1 EXTLE1 EXTED1 BCKEV1 EXTEV1

address bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
0x505 T1DB7 T1DB6 T1DB5 T1DB4 T1DB3 T1DB2 T1DB1 T1DB0

address bit 15 bit 8
0x506 Backward Event Code Register for front panel input 1

address bit 7 bit 0
0x507 External Event Code Register for front panel input 1

bit Function
EXTLVx Backward HW Event Level Sensitivity for input x

0 – active high
1 – active low

BCKLEx Backward HW Event Level Trigger enable for input x
0 – disable level events
1 – enable level events, send out backward event code every 1 us when
input is active (see EXTLVx for level sensitivity)

EXTLEx External HW Event Level Trigger enable for input x
0 – disable level events
1 – enable level events, apply external event code to active mapping
RAM every 1 us when input is active (see EXTLVx for level sensitivity)

EXTEDx Backward HW Event Edge Sensitivity for input x
0 – trigger on rising edge
1 – trigger on falling edge

BCKEVx Backward HW Event Edge Trigger Enable for input x
0 – disable backward HW event
1 – enable backward HW event, send out backward event code on
detected edge of hardware input (see EXTEDx bit for edge)

EXTEVx External HW Event Enable for input x
0 – disable external HW event
1 – enable external HW event, apply external event code to active
mapping RAM on edge of hardware input

TxDB7-
TxDB0

Backward distributed bus bit enable:
0 – disable distributed bus bit
1 – enable distributed bus bit control from hardware input: e.g. when
TxDB7 is ‘1’ the hardware input x state is sent out on distributed bus bit
7.

CML Output Pattern Registers (CMLxPatxx)
 bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16
 19 MSB 18 17 16

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 45 of 64

 bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
 15 14 13 12 11 10 9 8

 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
 7 6 5 4 3 2 1 0 LSB

Bit 19 MSB is sent out first, LSB last
Note that GTX pattern registers are accessed through the first four address locations of the GTX
pattern memory.

CML/GTX Output Control Register
Address bit 31 bit 16

 Frequency mode trigger position

Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

 GTX2MD GTXPH1 GTXPH0

Address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

 CMLRC CMLTL CMLMD CMLRES CMLPWD CMLENA

GTX2MD GUN-TX-203 Mode (cPCI-EVRTG-300 only)
0 – CML/GTX Mode
1 – SFP output in GUN-TX-203 Mode

GTXPH1:0 GUN-TX-203 Trigger output phase shift (cPCI-EVRTG-300 only)
00 – no delay
01 – output pulse delayed by ¼ event clock period (~2 ns)
10 – output pulse delayed by ½ event clock period (~4 ns)
11 – output pulse delayed by ¾ event clock period (~6 ns)

CMLRC CML Pattern recycle
CMLTL CML Frequency mode trigger level
CMLMD CML Mode Select:

00 = classic mode
01 = frequency mode
10 = pattern mode
11 = undefined

CMLRES CML Reset
1 = reset CML output (default on EVR power up)
0 = normal operation

CMLPWD CML Power Down
1 = CML outputs powered down (default on EVR power up)
0 = normal operation

CMLENA CML Enable
0 = CML output disabled (default on EVR power up)
1 = CML output enabled

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 46 of 64

SFP Module EEPROM and Diagnostics
Small Form Factor Pluggable (SFP) transceiver modules provide a means to identify the module
by accessing an EEPROM. As an advanced feature some modules also support reading dynamic
information including module temperature, receive and transmit power levels etc. from the
module. The EVR gives access to all of this information through a memory window of 2 × 256
bytes. The first 256 bytes consist of the EEPROM values and the rest of the advanced values.

Byte #
Decimal

Field size
(bytes)

Notes Value Hex

BASE ID FIELDS
0 1 Type of serial transceiver 03 = SFP transceiver
1 1 Extended identifier of type serial

transceiver
04 = serial ID module
definition

2 1 Code for connector type 07 = LC
3 – 10 8 Code for electronic compatibility or

optical compatibility

11 1 Code for serial encoding algorithm
12 1 Nominal bit rate, units of 100

MBits/sec

13 1 Reserved
14 1 Link length supported for 9/125 µm

fiber, units of km

15 1 Link length supported for 9/125 µm
fiber, units of 100 m

16 1 Link length supported for 50/125
µm fiber, units of 10 m

17 1 Link length supported for 62.5/125
µm fiber, units of 10 m

18 1 Link length supported for copper,
units of meters

19 1 Reserved
20 – 35 16 SFP transceiver vendor name

(ASCII)

36 1 Reserved
37 – 39 3 SFP transceiver vendor IEEE

company ID

40 – 55 16 Part number provided by SFP
transceiver vendor (ASCII)

56 – 59 4 Revision level for part number
provided by vendor (ASCII)

60 – 62 3 Reserved
63 1 Check code for Base ID Fields

EXTENDED ID FIELDS
64 – 65 2 Indicated which optional SFP

signals are implemented

66 1 Upper bit rate margin, units of %
67 1 Lower bit rate margin, units of %
68 – 83 16 Serial number provided by vendor

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 47 of 64

(ASCII)
84 – 91 8 Vendor’s manufacturing date code
92 – 94 3 Reserved
95 1 Check code for the Extended ID

Fields

VENDOR SPECIFIC ID FIELDS
96 – 127 32 Vendor specific data
128 – 255 Reserved

ENHANCED FEATURE SET MEMORY
256 – 257 2 Temp H Alarm Signed twos complement

integer in increments of 1/256
°C

258 – 259 2 Temp L Alarm Signed twos complement
integer in increments of 1/256
°C

260 – 261 2 Temp H Warning Signed twos complement
integer in increments of 1/256
°C

262 – 263 2 Temp L Warning Signed twos complement
integer in increments of 1/256
°C

264 – 265 2 VCC H Alarm Supply voltage decoded as
unsigned integer in increments
of 100 µV

266 – 267 2 VCC L Alarm Supply voltage decoded as
unsigned integer in increments
of 100 µV

268 – 269 2 VCC H Warning Supply voltage decoded as
unsigned integer in increments
of 100 µV

270 – 271 2 VCC L Warning Supply voltage decoded as
unsigned integer in increments
of 100 µV

272 – 273 2 Tx Bias H Alarm Laser bias current decoded as
unsigned integer in increment
of 2 µA

274 – 275 2 Tx Bias L Alarm Laser bias current decoded as
unsigned integer in increment
of 2 µA

276 – 277 2 Tx Bias H Warning Laser bias current decoded as
unsigned integer in increment
of 2 µA

278 – 279 2 Tx Bias L Warning Laser bias current decoded as
unsigned integer in increment
of 2 µA

280 – 281 2 Tx Power H Alarm Transmitter average optical
power decoded as unsigned
integer in increments of 0.1
µW

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 48 of 64

282 – 283 2 Tx Power L Alarm Transmitter average optical

power decoded as unsigned
integer in increments of 0.1
µW

284 – 285 2 Tx Power H Warning Transmitter average optical
power decoded as unsigned
integer in increments of 0.1
µW

286 – 287 2 Tx Power L Warning Transmitter average optical
power decoded as unsigned
integer in increments of 0.1
µW

288 – 289 2 Rx Power H Alarm Receiver average optical
power decoded as unsigned
integer in increments of 0.1
µW

290 – 291 2 Rx Power L Alarm Receiver average optical
power decoded as unsigned
integer in increments of 0.1
µW

292 – 293 2 Rx Power H Warning Receiver average optical
power decoded as unsigned
integer in increments of 0.1
µW

294 – 295 2 Rx Power L Warning Receiver average optical
power decoded as unsigned
integer in increments of 0.1
µW

296 – 311 16 Reserved
312 – 350 External Calibration Constants
351 1 Checksum for Bytes 256 – 350
352 – 353 2 Real Time Temperature Signed twos complement

integer in increments of 1/256
°C

354 – 355 2 Real Time VCC Power
SupplyVoltage

Supply voltage decoded as
unsigned integer in increments
of 100 µV

356 – 357 2 Real Time Tx Bias Current Laser bias current decoded as
unsigned integer in increment
of 2 µA

358 – 359 2 Real Time Tx Power Transmitter average optical
power decoded as unsigned
integer in increments of 0.1
µW

360 – 361 2 Real Time Rx Power Receiver average optical
power decoded as unsigned
integer in increments of 0.1
µW

362 – 365 4 Reserved

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 49 of 64

366 1 Status/Control bit 7: TX_DISABLE State

bit 6 – 3: Reserved
bit 2: TX_FAULT State
bit 1: RX_LOS State
bit 0: Data Ready (Bar)

367 1 Reserved
368 1 Alarm Flags bit 7: Temp High Alarm

bit 6: Temp Low Alarm
bit 5: VCC High Alarm
bit 4: VCC Low Alarm
bit 3: Tx Bias High Alarm
bit 2: Tx Bias Low Alarm
bit 1: Tx Power High Alarm
bit 0: Tx Power Low Alarm

369 1 Alarm Flags cont. bit 7: Rx Power High Alarm
bit 6: Rx Power Low Alarm
bit 5 – 0: Reserved

370 – 371 2 Reserved
372 1 Warning Flags bit 7: Temp High Warning

bit 6: Temp Low Warning
bit 5: VCC High Warning
bit 4: VCC Low Warning
bit 3: Tx Bias High Warning
bit 2: Tx Bias Low Warning
bit 1: Tx Power High Warning
bit 0: Tx Power Low Warning

373 1 Warning Flags cont. bit 7: Rx Power High Warning
bit 6: Rx Power Low Warning
bit 5 – 0: Reserved

374 – 511 Reserved/Vendor Specific

Application Programming Interface (API)
A Linux device driver and application interface is provided to setup up the Event Receiver.

Function Reference

int EvrOpen(struct MrfErRegs **pEr, char *device_name);
Description Opens the EVR device for access. Simultaneous

accesses are allowed.
Parameters struct MrfErRegs **pEr EvgOpen returns pointer to EVR registers by

memory mapping the I/O registers into user
space.

 char *device_name Holds the device name of the EVR, e.g.
/dev/ega3. The device names are set up by the
module_load script of the device driver.

Return value Return file descriptor on success.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 50 of 64

 Returns -1 on error.

int EvrClose(int fd);
Description Closes the EVR device after opening by

EvrOpen.
Parameters int fd File descriptor returned by EvrOpen
Return value Returns zero on success.
 Returns -1 on error.

int EvrEnable(volatile struct MrfErRegs *pEr, int state);
Description Enables the EVR and allows reception of

events.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int state 0: disable

1: enable
Return value Returns zero when EVR disabled
 Returns non-zero when EVR enabled

int EvrGetEnable(volatile struct MrfErRegs *pEr);
Description Retrieves state of the EVR.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
Return value Returns zero when EVR disabled
 Returns non-zero when EVR enabled

void EvrDumpStatus(volatile struct MrfErRegs *pEr);
Description Dump EVR status.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
Return value None

int EvrGetViolation(volatile struct MrfErRegs *pEr, int clear);
Description Get/clear EVR link violation status.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int clear 0: don’t clear

1: clear status
Return value Returns 0 when no violation detected.

Return non-zero when violation detected.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 51 of 64

void EvrDumpMapRam(volatile struct MrfErRegs *pEr, int ram);
Description Dump EVR mapping RAM.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int ram Number of RAM: 0 or 1
Return value None

int EvrMapRamEnable(volatile struct MrfErRegs *pEr, int ram, int
enable);
Description Enable/disable EVR mapping RAM.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int ram Number of RAM: 0 or 1
 int enable 0: disable RAM

1: enable RAM
Return value None

int EvrSetForwardEvent(volatile struct MrfErRegs *pEr, int ram, int
code, int enable);
Description Enable/disable EVR event forwarding.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int ram Number of mapping RAM: 0 or 1
 int code Event code to enable/disable event

forwarding
 int enable 0: disable event forwarding for code

1: enable event forwarding for code
Return value None

int EvrEnableEventForwarding(volatile struct MrfErRegs *pEr, int
state);
Description Enables forwarding of enabled event codes.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int state 0: disable forwarding

1: enable forwarding
Return value Returns zero when forwarding disabled
 Returns non-zero when forwarding enabled

int EvrGetEventForwarding(volatile struct MrfErRegs *pEr);
Description Retrieves state of event forwarding.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
Return value Returns zero when forwarding disabled

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 52 of 64

 Returns non-zero when forwarding enabled

int EvrSetLedEvent(volatile struct MrfErRegs *pEr, int ram, int code,
int enable);
Description Enable/disable EVR led event (Front panel

led will flash up for enabled event codes).
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int ram Number of mapping RAM: 0 or 1
 int code Event code to enable/disable led event for
 int enable 0: disable led event for code

1: enable led event for code
Return value None

int EvrSetFIFOEvent(volatile struct MrfErRegs *pEr, int ram, int code,
int enable);
Description Enable/disable storing specified event code

into FIFO.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int ram Number of mapping RAM: 0 or 1
 int code Event code to enable/disable
 int enable 0: disable storing event code in FIFO

1: enable storing event code in FIFO
Return value None

int EvrSetLatchEvent(volatile struct MrfErRegs *pEr, int ram, int code,
int enable);
Description Enable/disable latching timestamp on

specified event code.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int ram Number of mapping RAM: 0 or 1
 int code Event code to enable/disable
 int enable 0: disable latching of timestamp on event

code
1: enable latching of timestamp upon
reception of event code

Return value None

int EvrSetLogStopEvent(volatile struct MrfErRegs *pEr, int ram, int
code, int enable);
Description Enable/disable stopping of writes to event

log on reception of event code.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 53 of 64

 int ram Number of mapping RAM: 0 or 1
 int code Event code to enable/disable
 int enable 0: disable stop log event

1: stop log writes upon reception of event
code

Return value None

int EvrClearFIFO(volatile struct MrfErRegs *pEr);
Description Clear EVR Event FIFO.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
Return value None.

int EvrGetFIFOEvent(volatile struct MrfErRegs *pEr, struct FIFOEvent
*fe);
Description Get one Event from EVR Event FIFO.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 struct FIFOEvent *fe

struct FIFOEvent {
 u32 TimestampHigh;
 u32 TimestampLow;
 u32 EventCode;
};

Pointer to structure to place event in.

Return value 0 – Event retrieved successfully
-1 – Event FIFO was empty

int EvrEnableLogStopEvent(volatile struct MrfErRegs *pEr, int
enable);
Description Enable/disable stopping of writing to event

log on reception of event codes with STOP
Log mapping bit set.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.

 int enable 0: disable stop log event
1: stop log writes upon reception of event
codes with STOP log mapping bit set.

Return value Returns zero when stop events disabled
 Returns non-zero when stop events enabled

int EvrGetLogStopEvent(volatile struct MrfErRegs *pEr);
Description Check if log stop events are enabled.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
Return value Returns zero when stop events disabled
 Returns non-zero when stop events enabled

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 54 of 64

int EvrEnableLog(volatile struct MrfErRegs *pEr, int enable);
Description Enable/disable writing to log.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int enable 0: disable writes to log

1: enable writes to log
Return value Returns zero when log enabled
 Returns non-zero when log stopped.

int EvrGetLogState(volatile struct MrfErRegs *pEr, int enable);
Description Get log state.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
Return value Returns zero when logging enabled
 Returns non-zero when logging stopped.

int EvrGetLogStart(volatile struct MrfErRegs *pEr);
Description Get log start position.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
Return value Returns relative address to first log entry in

log ring buffer.

int EvrGetLogEntries(volatile struct MrfErRegs *pEr);
Description Get number of entries in log.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
Return value Returns number of entries in log (0 to 512).

void EvrDumpFIFO(volatile struct MrfErRegs *pEr);
Description Dump EVR FIFO on stdout.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
Return value None

int EvrClearLog(volatile struct MrfErRegs *pEr);
Description Empty EVR Event Log.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
Return value None.

void EvrDumpLog(volatile struct MrfErRegs *pEr);
Description Print out full EVR event log on stdout.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
Return value None

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 55 of 64

int EvrSetPulseMap(volatile struct MrfErRegs *pEr, int ram, int code,
int trig, int set, int clear);
Description Set up pulse generators for event codes.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int ram Number of mapping RAM: 0 or 1
 int code Event code affected
 int trig 0: no change

1: Trigger pulse generator from event code
 int set 0: no change

1: Set pulse high with this event code
 int clear 0: no change

1: Pull pulse low with this event code
Return value None

int EvrClearPulseMap(volatile struct MrfErRegs *pEr, int ram, int
code, int trig, int set, int clear);
Description Set up pulse generators for event codes.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int ram Number of mapping RAM: 0 or 1
 int code Event code affected
 int trig 0: no change

1: Don’t trigger pulse generator from this
event code

 int set 0: no change
1: Don’t set pulse high with this event code

 int clear 0: no change
1: Don’t pull pulse low with this event code

Return value None

int EvrSetPulseParams(volatile struct MrfErRegs *pEr, int pulse, int
presc, int delay, int width);
Description Set pulse generator parameters.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int pulse Number of pulse generator 0-9
 int presc Prescaler value
 int delay Delay Value
 int width Width Value
Return value Returns 0 on success, -1 on error

void EvrDumpPulses(volatile struct MrfErRegs *pEr, int pulses);
Description Dump EVR pulse generator settings.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 56 of 64

base.
 int pulses Number of pulse generators to dump
Return value None

int EvrSetPulseProperties(volatile struct MrfErRegs *pEr, int pulse, int
polarity, int map_reset_ena, int map_set_ena, int map_trigger_ena,
int enable);
Description Set pulse generator properties.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int pulse Number of pulse generator 0-9
 int polarity 0: normal polarity

1: inverted polarity
 int map_reset_ena 0: disable reset input

1: enable reset input
 int map_set_ena 0: disable set input

1: enable set input
 int map_trigger_ena 0: disable trigger input

1: enable trigger input
 int enable 0: pulse output disabled

1: pulse output enabled
Return value Returns 0 on success, -1 on error

int EvrSetUnivOutMap(volatile struct MrfErRegs *pEr, int output, int
map);
Description Set up universal output mappings.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int output Universal Output number
 int map Signal mapping (see erapi.h for details)
Return value Returns 0 on success, -1 on error

void EvrDumpUnivOutMap(volatile struct MrfErRegs *pEr, int
outputs);
Description Dump EVR Universal output mappings.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int outputs Number of outputs to dump
Return value None

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 57 of 64

int EvrSetFPOutMap(volatile struct MrfErRegs *pEr, int output, int
map);
Description Set up front panel output mappings.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int output Front Panel Output number
 int map Signal mapping (see erapi.h for details)
Return value Returns 0 on success, -1 on error

void EvrDumpFPOutMap(volatile struct MrfErRegs *pEr, int outputs);
Description Dump EVR Front panel output mappings.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int outputs Number of outputs to dump
Return value None

int EvrSetTBOutMap(volatile struct MrfErRegs *pEr, int output, int
map);
Description Set up Transition board output mappings.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int output Transition Board Output number
 int map Signal mapping (see erapi.h for details)
Return value Returns 0 on success, -1 on error

void EvrDumpTBOutMap(volatile struct MrfErRegs *pEr, int outputs);
Description Dump EVR Transition board output

mappings.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int outputs Number of outputs to dump
Return value None

void EvrIrqAssignHandler(volatile struct MrfErRegs *pEr, int fd, void
(*handler)(int));
Description Assign EVR interrupt handler.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int fd File descriptor returned by EvrOpen
 void (*handler)(int) Pointer to interrupt handler function
Return value None

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 58 of 64

int EvrIrqEnable(volatile struct MrfErRegs *pEr, int mask);
Description Enable EVR interrupts.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int mask Interrupt mask (see erapi.h) for mask bits.
Return value Returns mask read back from EVR.

int EvrGetIrqFlags(volatile struct MrfErRegs *pEr);
Description Get EVR interrupt flags.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
Return value Returns EVR interrupt flags.

int EvrClearIrqFlags(volatile struct MrfErRegs *pEr, int mask);
Description Clears EVR interrupt flags.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int mask Interrupt clear mask (see erapi.h) for flag

bits.
Return value Returns flags read back from EVR.

void EvrIrqHandled(int fd);
Description Function to call at the end of interrupt

handler function.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int fd File descriptor returned by EvrOpen
Return value None

int EvrSetPulseIrqMap(volatile struct MrfErRegs *pEr, int map);
Description Set up interrupt mappings.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int map Signal mapping (see erapi.h for details)
Return value Returns 0 on success, -1 on error

int EvrUnivDlyEnable(volatile struct MrfErRegs *pEr, int dlymod, int
enable);
Description Enable/disable UNIV-LVPECL-DLY output.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 59 of 64

 int dlymod Number of UNIV-LVPECL-DLY module:

0 – module in slot #1 (UNIV0/1)
1 – module in slot #2 (UNIV2/3)

 int enable 0 – disable module output
1 – enable module output

Return value Returns 0 on success, -1 on error

int EvrUnivDlySetDelay(volatile struct MrfErRegs *pEr, int dlymod, int
dly0, int dly1);
Description Enable/disable UNIV-LVPECL-DLY output.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int dlymod Number of UNIV-LVPECL-DLY module:

0 – module in slot #1 (UNIV0/1)
1 – module in slot #2 (UNIV2/3)

 int dly0 Delay value for output 0/2:
0 – shortest delay
1023 – longest delay (approx. 9-10 ps/step)

 int dly01 Delay value for output 1/3:
0 – shortest delay
1023 – longest delay (approx. 9-10 ps/step)

Return value Returns 0 on success, -1 on error

int EvrSetFracDiv(volatile struct MrfErRegs *pEr, int fracdiv);
Description Set fractional divider control word which

provides reference frequency for receiver.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int fracdiv Fractional divider control word
Return value Returns control word written

int EvrGetFracDiv(volatile struct MrfErRegs *pEr);
Description Get fractional divider control word which

provides reference frequency for receiver.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
Return value Returns control word

int EvrSetDBufMode(volatile struct MrfErRegs *pEr, int enable);
Description Enable/disable data buffer mode. When data

buffer mode is enabled every other
distributed bus byte is reserved for data
transmission thus the distributed bus

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 60 of 64

bandwidth is halved.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int enable 0 – disable data buffer mode

1 – enable data buffer mode
Return value Data buffer status (see Receive Data Buffer

Control and Status Register on page 38 for
bit definitions).

int EvrGetDBufStatus(volatile struct MrfErRegs *pEr);
Description Get data buffer mode. When data buffer

mode is enabled every other distributed bus
byte is reserved for data transmission thus the
distributed bus bandwidth is halved.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.

Return value Data buffer status (see Receive Data Buffer
Control and Status Register on page 38 for
bit definitions).

int EvrReceiveDBuf(volatile struct MrfErRegs *pEr, int enable);
Description Enable reception of data buffer. After

reception of a data buffer further reception is
disabled until re-enabled by software.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.

 int enable 0 – disable data buffer reception.
1 – enable data buffer reception

Return value Data buffer status (see Receive Data Buffer
Control and Status Register on page 38 for
definitions).

int EvrGetDBuf(volatile struct MrfErRegs *pEr, char *dbuf, int size);
Description Receive data buffer data.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 char *dbuf Pointer to local data buffer
 int size Size of dbuf buffer.
Return value Size of received buffer.

-1 on error (no buffer received, local buffer
too small or checksum error)

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 61 of 64

int EvrSetTimestampDivider(volatile struct MrfErRegs *pEr, int div);
Description Set timestamp counter divider
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int div Timestamp divider value:

0 – count timestamp events (or use DBUS4
as clock)
1 to 65535 – count at event clock/value rate

Return value Return divider value.

int EvrSetTimestampDBus(volatile struct MrfErRegs *pEr, int enable);
Description Control timestamp counter count from

distributed bus bit 4 (DBUS4).
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int enable 0 – disable counting from DBUS4

1 – enable timestamp counting from DBUS4.
Note: Timestamp counter has to be 0.

Return value

int EvrGetTimestampCounter(volatile struct MrfErRegs *pEr);
Description Get Timestamp Counter value
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
Return value Timestamp Counter value

int EvrGetSecondsCounter(volatile struct MrfErRegs *pEr);
Description Get Timestamp Seconds Counter value
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
Return value Timestamp Seconds Counter value

int EvrGetTimestampLatch(volatile struct MrfErRegs *pEr);
Description Get Timestamp Latch value
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
Return value Timestamp Latch value

int EvrGetSecondsLatch(volatile struct MrfErRegs *pEr);
Description Get Timestamp Seconds Latch value
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 62 of 64

base.
Return value Timestamp Seconds Latch value

int EvrSetPrescaler(volatile struct MrfErRegs *pEr, int presc, int div);
Description Set prescaler divider
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int presc Number of prescaler
 int div Prescaler divider value:

1 to 65535 – count at event clock/value rate
Return value Return divider value.

int EvrSetExtEvent(volatile struct MrfErRegs *pEr, int ttlin, int code,
int edge_enable, int level_enable);
Description Set external event code
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int ttlin Number of front panel input: 0, 1
 int code Event code to generate on detected edge/level
 int edge_enable 0 – disable

1 – enable events on active edge
 int level_enable 0 – disable

1 – enable sending out event every 1 us on
active level

Return value 0 – successful
-1 – error

int EvrSetBackEvent(volatile struct MrfErRegs *pEr, int ttlin, int code,
int edge_enable, int level_enable);
Description Set backwards event code
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int ttlin Number of front panel input: 0, 1
 int code Event code to send out on detected edge/level
 int edge_enable 0 – disable

1 – enable events on active edge
 int level_enable 0 – disable

1 – enable sending out event every 1 us on
active level

Return value 0 – successful
-1 – error

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 63 of 64

int EvrSetExtEdgeSensitivity(volatile struct MrfErRegs *pEr, int ttlin,
int edge);
Description Set external input edge sensitivity
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int ttlin Number of front panel input: 0, 1
 int edge 0 – detect rising edges

1 – detect falling edges
Return value 0 – successful

-1 – error

int EvrSetExtLevelSensitivity(volatile struct MrfErRegs *pEr, int ttlin,
int level);
Description Set external input edge sensitivity
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
 int ttlin Number of front panel input: 0, 1
 int level 0 – detect high level (active high)

1 – detect low level (active low)
Return value 0 – successful

-1 – error

int EvrSetTxDBufMode(volatile struct MrfErRegs *pEr, int enable);
Description Enable/disable transmitter data buffer mode.

When data buffer mode is enabled every
other distributed bus byte is reserved for data
transmission thus the distributed bus
bandwidth is halved.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.

 int enable 0 – disable transmitter data buffer mode
1 – enable transmitter data buffer mode

Return value Transmit data buffer status (see Transmit
Data Buffer Control Register on page 38 for
bit definitions).

int EvrGetTxDBufStatus(volatile struct MrfErRegs *pEr);
Description Get transmit data buffer status. When data

buffer mode is enabled every other
distributed bus byte is reserved for data
transmission thus the distributed bus
bandwidth is halved.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.

Return value Transmit data buffer status (see Transmit
Data Buffer Control Register on page 38 for

Micro-Research Finland Oy
Jorvas Hitech Center, Hirsalantie 11, 02420 Jorvas, Finland

 Document: EVR-MRM-003.doc
Page: 64 of 64

bit definitions).

int EvrSendTxDBuf(volatile struct MrfErRegs *pEr, char *dbuf, int
size);
Description Get transmit data buffer status. When data

buffer mode is enabled every other
distributed bus byte is reserved for data
transmission thus the distributed bus
bandwidth is halved.

Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register
base.

 char *dbuf Pointer to local data buffer
 int size Size of data in bytes to be transmitted:

4, 8, 12, …, 2048.
Return value Size of buffer being sent.

-1 on error.

int EvrGetFormFactor(volatile struct MrfErRegs *pEr);
Description Get form factor code from EVR.
Parameters volatile struct MrfErRegs *pEr Pointer to memory mapped EVR register

base.
Return value Form factor. See FPGA Firmware Version

Register on page 39 for details.

