Report on Linac Study 2004/06/28-07/01

- 1. Multi-energy linac
- 2. Secondary e^{-} from e^{+} target

Multi-energy linac

- Motivation: beam injection to KEKB/PF/AR "simultaneously".
 - KEKB: 8GeV e⁻ / 3.5 GeV e⁺
 - PF: 2.5 GeV e⁻
 - AR: 3 GeV e⁻ (upgrade to 3.5 4 GeV in future plan)
- Energy adjustment can or will be done by klystron or subbooster phase quickly.
 - Beam is accelerated up to ~5.3 GeV then decelerated to 2.5 GeV using deceleration phase.
 - PF/AR should accept beam from A1 Gun (common source).
- It is difficult to change magnetic field fast by using current system.
- Is there beam optics to satisfy different energy beams ?
- If answer is "yes", beams can be injected to KEKB/PF/AR simultaneously in at least KEKB e⁻ mode w/o bypass line.
- Need modification/construction of SY3 and AR beamtransport line.

SY3 configuration (present)

Modification of SY3 for multi-energy linac

"2.5 GeV" e⁻ optics & 8 GeV e- optics (based on 2.5 GeV)

- Energy adjustment
 - C1~34: full acceleration up to 5 GeV
 - 35~5-sector end: full deceleration to 2.5 GeV with 180 deg. phase shift of klystrons or sub-boosters.
- 90 deg. phase advance (4-sector & 5-sector) for 2.5 GeV optics → ~25 deg. phase advance for 8 GeV optics
- Measurement
 - Energy (BM611 & SP61H/SC61H)
 - Emittance (5-sector wire scanner)

- Difference between 2.5 GeV and 8 GeV optics is phase of klystrons or sub-boosters.
- Magnetic field DO NOT change.

Beam orbit in "2.5 GeV" and 8 GeV e⁻ optics

C-sector 1-sector 2-sector 3-sector 4-sector 5-sector

C-sector 1-sector 2-sector 3-sector 4-sector 5-sector

Measurement of energy and emittance

- Energy = 2.7 GeV (SC61H)
- $\gamma \varepsilon_x = 3.6 \times 10^{-4} \text{ m}$

•
$$\gamma \varepsilon_y = 6 \times 10^{-5} \text{ m}$$

- Energy = 8 GeV (SC61H)
- $\gamma \varepsilon_x = 2.5 \times 10^{-4} \text{ m}$
- $\gamma \epsilon_y = 4x10^{-5} m$

8 GeV e⁻ optics

Emittance measurement using Wire Scanner

Summary of multi-energy linac

- Common magnet setting has been tested for "2.5 GeV" and 8 GeV e⁻ beams.
- Orbit displacement is "mild" between "2.5 GeV" and 8 GeV e⁻ optics.
- Orbit correction satisfies both energies can be made.
- Normalized emittance of 8 GeV is similar to "2.5 GeV" eoptics.

Secondary e⁻ from e⁺ target

- Primary e⁻ (4 GeV) hits tungsten-copper target and e⁻/e⁺ are generated.
- e⁻ from target can be accelerated with phase shift of klystrons(opposite phase of e⁺).
 - up to 3.5 GeV. C-Bands are needed to achieve 4 GeV e⁻ beam.
- Emittance of secondary electrons become larger than primary electrons. (similar emittance to e⁺)
- Velocity bunching
 - idea of bunching beams with radio-frequency(RF) structures
 - to make energy-spread small (bunch compression)
 - phase slippage between e⁻ and rf wave during acceleration of nonrelativistic e⁻.

Secondary 3.5 GeV electrons (normal setting)

Velocity bunching

Summary of secondary e⁻

- Secondary e⁻ can be accelerated to linac end.
- Emittance of e^- is similar to that of e^+ .
 - $-\gamma \epsilon_{x} = 1.8 \times 10^{-3} \text{ m} / \gamma \epsilon_{y} = 1.5 \times 10^{-3} \text{ m}$
- Preliminary experiment for velocity bunching
 - Comparison of data with simulation.
 - Future plan:
 - Bunch length measurement using streak camera.
 - Preparation of optics for low initial energy e⁻ to transport to linac end.
 - Emittance measurements using 5-sector wire scanner.

