Injector Status [Positron Source Upgrade]

KEKB injector linac Takuya Kamitani

SuperKEKB Injector

Key issues in Positron Source Upgrade

- Damping ring for lower emittance (2000 -> $92_{[H]}/7_{[V]} \mu m$)
- Capture section upgrade for higher intensity (1 -> 4 nC)
 - flux concentrator (e+ focusing pulsed solenoid)
 - LAS [Large Aperture S-band accelerating structure]

SuperKEKB positron station

e+/e- beam switching & target hole

4

injection e- beam ON-axis for low emittance preservation
 primary e- beam OFF-axis with positron yield degradation

Positron production target

- target material selection
 - high Z material
 - high melting point
 - high tensile strength
- => tungsten
 14 mm long = 4.0 X₀
 4 mm diameter
- beam hole for injection e-

Beam spoiler for target protection

- beam spoiler to enlarge beam spot on target to be σ_x,σ_y> 0.7 mm to avoid target destruction
- spot size monitoring screen Al₂O₃ (0.14 mm thick)
 + scattering Al foil (0.25 mm thick) [total material thickness = 0.05 X₀]
- beam hole for injection e-

flux concentration concept

- DC current in primary coil produce uniform solenoidal field
- Pulsed current & Conductor with slit
 => eddy current flows inner surface
 to generate high magnetic flux density (flux concentration !)

but with non-axial symmetric transverse field !
=> transverse kick to positrons ! beam loss !

e+ yield degradation by target offset

e+ yield degrades ~50 % by offset e+ generation

1

- it can be improved to 78 % by
 - utilizing transverse kick by proper orientation of FC slit
 - e- incident position optimization

Belle2GM (2014.06.18)

Injector Status [Positron Source Upgrade] (Takuya Kamitani)

Positron Capture Section

positron capture animation

from target to capture section exit (120 MeV)

You are watching longitudinal particle motion (z-position vs energy) in a moving frame riding on a microwave !

Positrons with deceleration capture favored for less halo and satellites !

10

e+/e- separator chicane

- both secondary e+/e- are captured
- to avoid disturbance of beam position monitors by mixture of e+/e- signals, only secondary e- are absorbed
- pure e+ beam is transmitted

The first positron beam after the upgrade

BPM: SP_15_T in front of target negative charged particles (e- beam) give (-) (+) bipolar signal

BPM: SP_16_5 after e+ capture section positive charged particles (e+ beam) give (+) (-) signal

observed positron intensity

Summary

1) Positron source components have been installed in the beam line

(a target, a beam spoiler, a flux concentrator, bridge coils, DC solenoids, LAS accelerating structures, e+/e- separator chicane, plenty of quads)

2) Still in low spec. operation due to various constraints

		design full spec.	achieved
•	flux concentrator	12 kA	6 kA
•	bridge coils	750 A	600 A
•	DC solenoids	650 A	370 A
•	LAS field gradient	14, 10 MV/m	10, 7 MV/m

3) We have observed the first positron beam after the upgrade ! 2014.06.09 $(Q_{e+} = 0.02 \text{ nC} @ \text{sector-2 end for } Q_{e-} = 0.5 \text{ nC} @ \text{target})$ x^{200} $Q_{e+} = 4 \text{ nC}$ $Q_{e-} = 10 \text{ nC}$ SuperKEKB full spec.