LINAC Status and Plans

Monday, 21th October 2019 B2GM Accelerator Laboratory (5th) Y. Seimiya

Contains

1. Introduction

2. New Findings of Injection Beam

- A) Emittance Growth
- B) Belle II Background by Injection Beam
- C) Beam Abort by Injection Beam
- D) Yield of Positron Beam
- 3. Recent Activity of LINAC
- 4. Plans

Contains

1. Introduction

2. New Findings of Injection Beam

- A) Emittance Growth
- B) Belle II Background by Injection Beam
- C) Beam Abort by Injection Beam
- D) Yield of Positron Beam
- 3. Recent Activity of LINAC
- 4. Plans

1. Introduction

SuperKEKB comparison with KEKB

- Small emittance and high-intensity beam are required for injection beam.
- "Emittance ∝ charge squared", 100 times higher performance is desired.

Footprint of LINAC and Beam Transport Line (BT)

Contains

1. Introduction

2. New Findings of Injection Beam

- A) Emittance Growth
- B) Belle II Background by Injection Beam
- C) Beam Abort by Injection Beam
- D) Yield of Positron Beam
- 3. Recent Activity of LINAC
- 4. Plans

A) Emittance Growth

Main Reasons of Emittance Growth

- 1. Residual dispersion increases emittance through energy spread.
- 2. If there is residual dispersion "in acceleration cavity", it causes further serious emittance growth.

(bunch length increases emittance through the residual dispersion -> z-dispersion)

In each case, emittance growth is reduced by suppression tuning of the residual dispersion.

7

measured in the cavity.

acceleration cavity

Emittance Measurement

 Horizontal emittance became 5 times larger by ECS cavity with residual dispersion.

N. lida

A) Emittance Growth

Reason of the Residual Dispersion and the Countermeasure

- It was found that beam passed through non-flat magnetic field.
- There is not quadrupole magnet in this ARC, we could not suppress the residual dispersion.
- We moved bending magnets so as beam passes through the flat field region.

Improvement of Residual Dispersion

Improvement of emittance (for LER beam)

- After the dispersion correction by bending magnet alignment, emittance growth by ECS cavity almost disappeared!
- Vertical emittance increases between BT1 and BT2. One of the main reasons is vertical residual dispersion in BT.

N. lida M. Kikuchi T. Mori A) Emittance Growth

Residual Dispersion in BT

- Non-negligible residual dispersion was observed.
- We should minimize the residual dispersion at the BT end.
- Additional skew quadrupole magnets will be installed to reduce vertical residual dispersion.

Contains

1. Introduction

2. New Findings of Injection Beam

- A) Emittance Growth
- B) Belle II Background by Injection Beam
- C) Beam Abort by Injection Beam
- D) Yield of Positron Beam
- 3. Recent Activity of LINAC
- 4. Plans

Background reduction by tuning of injection beam

M. Yoshida

- Orbit, energy spread, and emittance tuning were performed.
- By injection beam tuning, background was reduced.
- Next step is stabilization.

For injection beam stabilization

Tool Achievement Feedback Place Many people Jarc, DR, BT \bigcirc **Energy feedback** \bigcirc Energy Sub Harmonic Buncher 1 Energy spread \bigcirc (SHB1) for LER beam Thermionic Gun SHB2 TBI _ LINAC \bigcirc **RF** Phase monitor TBI RF Induced wave monitor LINAC \triangle _ **OctoPos BPM monitor** Jarc TBI \triangle ΒT TBI TBI LINAC **Temperature control** \wedge Orbit **Orbit feedback** LINAC + BT \bigcirc _ **Offset injection** LINAC TBI TBI Orbit jitter Pulsed magnet PS Sector 3-5 \bigcirc Energy jitter Energy knob phase Sector B, 2, 5 \wedge RF phase LINAC \triangle — Injection phase FB of Master oscillator LINAC and MR \bigcirc \bigcirc Emittance e- RF gun RF Gun \triangle (stability) TBI e+ DR DR \bigcirc LINAC, BT \bigcirc Wire scanner End of BT \triangle 17 _

Orbit Feedback

- An example of orbit FB (Shown BPM place in the LINAC end)
- Orbit FB is operated correctly.

Contains

- 1. Introduction
- 2. New Findings of Injection Beam
 - A) Emittance Growth
 - B) Belle II Background by Injection Beam
 - C) Beam Abort by Injection Beam
 - D) Yield of Positron Beam
- 3. Recent Activity of LINAC
- 4. Plans

C) Beam Abort by Injection Beam

• Sometimes abnormal injection beam induces beam abort.

Y. Seimiva

Contains

- 1. Introduction
- 2. New Findings of Injection Beam
 - A) Emittance Growth
 - B) Belle II Background by Injection Beam
 - C) Beam Abort by Injection Beam
 - D) Yield of Positron Beam
- 3. Recent Activity of LINAC
- 4. Plans

D) Yield of Positron Beam

- Measured positron yield is 30% less than simulated one.
- Non-axisymmetric field component were observed by electron beam deflection.
- This could cause e+ beam loss.

D) Yield of Positron Beam

Countermeasure of the Positron Yield Problem

- For understanding the phenomena and controlling beam orbit, we are planning to install orbit correction coils and BPMs.
- Detailed field distribution is being evaluated, including return yokes and structures (Fe) around solenoid.

Next Tasks

A) Emittance Growth

- Tuning to reduce the residual dispersion.
- At BT for e+, additional skew quadrupole magnets will be installed to reduce vertical residual dispersion.

B) Background by Injection Beam

- Emittance and energy spread tuning.
- RF phase FB is being introduced for stable energy spread.

C) Ring Abort by Injection Beam

To stop abnormal beams, installation of collimators is planned in this winter for HER and in the next summer for LER, respectively.

D) Yield of Positron Beam

We are planning to install orbit correction coils and BPMs in the next summer.

Contains

1. Introduction

2. New Findings of Injection Beam

- A) Emittance Growth
- B) Belle II Background by Injection Beam
- C) Beam Abort by Injection Beam
- D) Yield of Positron Beam

3. Recent Activity of LINAC

4. Plans

3. Recent Activity of LINAC

- <u>4 ring simultaneous top-up injection</u>
- Long-term continuous operation of RF gun
- <u>Completion of recovery from fire accident</u>
- Main works in this summer shutdown.
 - RF gun
 - Vacuum exhaust of laser waveguide.
 - New air conditioning and insulation in laser hut.
 - Laser line preparation of RF gun for backup.
 - Beam line
 - Alignment
 - Mover installation for acceleration unit girder. (4 units)
 - Monitor
 - Installation of additional high resolution profile monitors. (OTR, YAG)

3. Recent Update of LINAC

4 Ring Simultaneous Top-Up Injection

27

Contains

1. Introduction

2. New Findings of Injection Beam

- A) Emittance Growth
- B) Belle II Background by Injection Beam
- C) Beam Abort by Injection Beam
- D) Yield of Positron Beam
- 3. Recent Activity of LINAC

4. Plans

Plans

This Winter

- HER/LER 2 bunch injection
- Additional skew quadrupole magnets installation in e+ BT
- Collimator installation for HER

Next Summer

- Collimator installation for LER
- Installation of orbit correction coils and BPMs at e+ capture section
- New FC installation
 - \rightarrow e+ charge increase
- New pulsed bending magnet in merger line installation and new laser for RF gun installation
 - \rightarrow 50 Hz single beam operation

Thank you for your attention!

back up

A) Emittance Growth

Main Reasons of Emittance Growth

- Residual Dispersion
 - 1. If there is Residual Dispersion after ARC, energy spread increases beam size through residual dispersion.
 - 2. If there is Residual Dispersion in compression acceleration cavity, bunch length increases beam size through residual dispersion.

Countermeasures

- A) Emittance Growth
 - > Tuning to reduce the residual dispersion.
 - At BT for e+, additional skew quadrupole magnets will be installed to reduce vertical residual dispersion.
- B) Background by Injection Beam
 - > Emittance and energy spread tuning.
 - > Orbit FB and RF phase FB.
- C) Ring Abort by Injection Beam
 - > To stop abnormal beams, installation of collimators is planned.
- D) Yield of Positron Beam
 - > We are planning to install orbit correction coils and BPMs.
 - 2 bunch operation, primary e- increase, beam loss reduction, field of flux concentrator increase.

D) Yield of Positron Beam

- Measured positron yield is 30% less than simulated one.
- Non-axisymmetric field component were observed by electron beam deflection.

D) Yield of Positron Beam

Countermeasure of the Positron Yield Problem

- For understanding the phenomena and controlling beam orbit, we are planning to install ST coils and BPMs in next summer.
- Detail simulation, which includes return yoke and structure (Fe) around solenoid, is performing now. (Y. Enomoto)

Emittance Measurement (for HER)

- Emittance was worse than Phase 2, because tuning time was limited by fire accident.
- It seems that wakefield by beam cause emittance growth from sector C to sector 5.
- To reduce tuning time, we are preparing automatic emittance minimized program.

N. lida M. Kikuchi T. Mori

Ununiform magnetic field of bending magnet

- There are two type of bending magnet.
- One is C-type, the other is H-type.
- C-type's magnetic gap is easier to shrunk by own magnetic field than that of H-type.
- By the shrunk gap, ununiform magnetic filed is generated.

Typical Charge in Phase 3

Positron Charge at some point

	primary e- (nC)	FC (kA)	Yield (simulation)	Yield比 (measured/ simulated)	e+ (nC) @before LTR	e+ (nC) @Linac end	e+ (nC) @BT end
2019/6	7.5	3	0.34	0.7	1.5 (measured)	1 (measured)	0.7 (measured)
Ideal case except charge loss	10	12	0.58	1	4.9 (extrapolation)	3.2 (extrapolation)	2.3 (extrapolation)

It is necessary to reduce beam loss.

Other Sources of Emittance Growth

Candidates of emittance growth in LINAC or BT.

1. Beam Phase Space Jitter

• The emittance that includes beam phase space jitter, called as effective emittance, must be satisfy the SuperKEKB requirement.

2. Wakefield in Acceleration Structure

- Wakefield, generated by a head of bunch, kicks its own tail.
- Thus if the beam is off-centered in the structure, the transverse wakefield increases beam emittance.

3. Radiation Excitation

- Radiation excitation effect on emittance is proportional to both Lorenz gamma to the fifth power and inverse of curvature radius to the third power.
- Especially, electron beam (7 GeV) is strongly affected by the radiation excitation effect.

A) Residual Dispersion in LINAC

- Large residual dispersion had been observed at the J-ARC before dispersion correction.
- By tuning the strength of quadrupole magnets, residual dispersion became small.

A) Residual Dispersion

A) Other sources of Residual Dispersion

- Both orbit and angle of a beam which pass through bending magnets.
- Orbit displacement at quadrupole magnets that have a large strength creates a sizable dispersion.
- Orbit of a beam which pass through sextupole magnets.

To keep residual dispersion minimized, orbit feedback is necessary.

A) Residual Dispersion

A) Orbit Feedback

- An example of orbit FB (Shown BPM place in the LINAC end)
- Orbit FB at the end of LINAC was operated correctly.
- Orbit FB of J-ARC upstream will be performed next run.

44

A) Residual Dispersion

A) Magnet used in the orbit FB at the end of BT

A) Residual Dispersion A) Residual Dispersion at BT line

- We had corrected dispersion of each BT ARC one by one.
- After that dispersion of the BT overall was measured changing the beam energy.
- Non-negligible residual dispersion was still observed.
- We will minimize $\Delta \eta$ and $\Delta \eta$ ' at the end of BT in the autumn run.

B) Beam Phase Space Jitter Phase Space Jitter

- In 2018, large orbit jitter was measured (1000 shots).
- Emittance estimated from beam jitter, called jitter emittance, was not negligible.

B) Beam Phase Space Jitter B) Wakefield effect and Beam Phase Space Jitter

- Electron beam straightly pass through the positron generation target hole, whose diameter is 2 mm.
- We suspected wakefield effect as a orbit jitter source.

Wakefield effect of target hole is negligibly small.

B) Beam Phase Space Jitter B) Dispersion and Beam Phase Space Jitter

- We focus on dispersion which convert to orbit jitter through energy jitter.
- By dispersion correction, jitter emittance become less than 1 μ m.

B) Beam Phase Space Jitter

B) β Function and Orbit Jitter

- Remain orbit jitter can be explained by β function.
- Using Twiss parameters measured by WS at C sector, β function near target is derived.
- β function is highly correlated with orbit jitter.
- We conclude that large orbit jitter sources are mainly both residual dispersion and β function.

B) Beam Phase Space Jitter B) Other Sources of Beam Phase Space Jitter

- By further investigation, we found that following items were sometimes sources of jitter. Pulse magnet and RF phase jitter was almost resolved by person in charge.
- To identify the jitter source, monitoring beam jitter is important.

B) Beam Phase Space Jitter B) Beam Phase Space Jitter at BT line

- In the RTL and BT, orbit jitter is much larger than that in LINAC, partly because BPM resolution is poor.
- Orbit jitter of first straight line in BT is about ~150 μ m@1 σ . This value is probably BPM resolution.
- Assumed that calculated jitter emittance at the first straight line came from BPM resolution, jitter emittance at second straight line is estimated as following:
 - e- beam: $\gamma\beta\epsilon_{ix}/\gamma\beta\epsilon_{iy}$ @BT end ~ 40/50 μ m
 - e+ beam: $\gamma\beta\epsilon_{ix}/\gamma\beta\epsilon_{iy}$ @BT end ~ 30/30 μ m
- High resolution BPM is strongly desirable at BT. An upgrade of some BPMs for higher resolution is planned.

C) Wakefield in Acceleration Structure

C) Wakefield in Acceleration Structure

- Using a steering magnet, we searched an orbit so as to minimize emittance.
- Emittance highly depends on beam charge and orbit.
- Wake free steering will be performed using RF gun in the next run.

E) Radiation Excitation

E) Emittance growth induced by radiation excitation in BT

Theoretical emittance growth induced by radiation excitation:

$$\Delta \epsilon = rac{55}{48\sqrt{3}} rac{\hbar r_e}{mc} \gamma^5 \int rac{H}{
ho^3} ds \quad lpha \ \gamma^5, 1/
ho^3$$

Particle tracking simulation was performed from the end of LINAC to the end of BT.

Simulation	Initial particles	With Radiation	Phase-III final requirement
<mark>e- (7 GeV)</mark> γβε _x [μm]	20	65	40 -> The
<mark>e+ (4 GeV)</mark> γβε _x [μm]	64	74	100

- Radiation excitation has little dependence or initial emittance.
- By the radiation excitation, emittance /growth of e-/e+ beam is about 48/10 μm.
 The beam size at the injection septum is 0.31 mm, assuming βx = 20 m. The required injection aperture is still dominated by the septum width of 2.5 mm. Although the emittance growth due to synchrotron radiation is very big, it plays only a minor role on the injection aperture itself.