Injector Linac Status

Feb. 22nd, 2020
Masanori Satoh (KEK, Acc. Lab.)
for Injector Linac Group

Contents

- Injector overview
- e-/e+ beam status
- Beam abort caused by abnormal injection beam
 - Abnormal orbit (pulsed magnet issue)
 - Abnormal energy (rf failure)
- Feedback loops
- Summary and plan

2020/6/21

Injector: Simultaneous top-up to five rings

- Photocathode RF gun for HER injection
- Thermionic gun for LER (via DR), PF, PF-AR

Hybrid laser system for rf gun

Three Oscillators (two of them are backup)

Yb doped fiber and Neodymium (Nd) doped laser crystal

1st + 2nd laser line: laser line:

e- beam bunch length

~ 10 ps (FWHM)

UV laser beam profile

e- source

R. Zhan, SuperKEKB review, 2019 Optics layout in the tunnel

HER injection beam (rf e- gun) status

- HER injection w/ only rf gun since Mar. 11th, 2019.
- Laser system has no significant fault.
- In summer shutdown of 2019, photocathode (Ir₇Ce₂) was replaced by new one (Ir₂Ce) for aiming at better quantum efficiency (Qe).
 - Discharge, frequent VSWR, gradual decrease of bunch charge

- In the last winter shutdown, photocathode was replaced
 - $-\operatorname{Ir2Ce} \Rightarrow \operatorname{Ir7Ce}_2$

2020/6/21

Laser cleaning / Focused laser size

- 2nd Laser only
- Scan using focused laser beam without RF

HER injection beam (rf e- gun) status

- Laser cleaning for recovering Qe.
- Bunch charge feedback works fine to keep bunch charge constant.
- In this summer, diffractive optical element (DOE) will be installed for transverse laser beam shaping (flat top). It could be help for low emittance beam.
- Laser position feedback will be prepared soon.

e- beam emittance

- Ex,y ~15 μm at SectorB, SectorB
- Emittance growth at BT2 in both directions.
- Beam based alignment in BT line is now in progress.
- Emittance could be increased at around solenoid section in Sector1.

Steering magnet and BPM in solenoid section

- There is no BPM and steering magnet between e+ target and 16_5 unit.
- DC steering (x4) and BPM (x4) will be installed in this summer shutdown.
- It could be help to cure e+ beam loss and e- beam emittance growth.

e+ source setup

Positron target and capture section

e+ bunch charge trend

LER injection beam status

- Bunch charge
 - Stable and enough bunch charge in this stage
 - Primary e-: 11 nC (from gun), 9 nC (on W target), e+: 1.2 nC (linac end), 0.8 nC (BT)
- Flux concentrator (FC)
 - Previous FC was damaged by large discharge during PhaseII. It was removed in Sept. 2018.
 - Current FC was installed in Jan. 2019.
 - 2 ~ 3 kA operation current (design 12 kA) for stable operation. no significant fault.

Requirements for material of the FC head are

- Good brazing characteristic
- High yield strength even after brazing
- High electric and thermal conductivity
- New FC made of Cu-alloy (NC50: Cu-Si-Ni) has been tested w/o fault (~ 12 kA).
- New FC will be installed in summer shutdown of 2020 for aiming at design operation current.

2020/6/21

After large discharge...

Slit gap got narrow.
Not possible to apply
high voltage unless the
gap will be expanded.

After large discharge

FC assembly, base summary

- *Base 7, 8, 9 (head : $Cu \rightarrow NC50$, return yoke : $SS400 \rightarrow permendur$)
- **Base 8, 9 Shape optimization (insulation, leakage magnetic field)

red: operation

blue: spare

black: test bench

Y. Enomoto

Test result of new FC: 2020/1 - 2020/6

During long term test, no trouble (discharge and vacuum pressure problem)

FC base 7 test: ~ May 2020 FC base 8 test: June 2020 ~

e+ beam emittance

- e+ beam emittance in linac and BT1 are smaller than current goal.
- Emittance growth at BT2 in both directions.
- Beam based alignment in BT line is now in progress.

Feedback loops (1)

- Beam energy feedback (J-ARC, LTR, ECS, BT)
 - J-ARC $\overline{(e-, e+)}$
 - DR (e+)
 - Linac end
 - -BT (e-, e+)
- Energy stability at BT line < 0.025%

Feedback loops (2)

- Beam orbit feedback
 - J-ARC (e-, e+)
 - − e+ target upstream (e-, e+)
 - Sector2 (e-)
 - Sector3-5 (e-)
 - Linac end, BT end (e-, e+)

Sector3-5 FB ON

Feedback loops (3)

- RF phase feedback has been newly implemented.
- Quick recover from tunnel work (after maintenance or trouble recovery)

Abnormal injection beam could cause MR abort

- Abnormal beam orbit
 - Pulsed magnet misfire (Sector3-Sector5)

- Abnormal beam energy
 - Klystron down
 - RF phase trip
 - RF pulse shortening (klystron discharge)

2020/6/21

Pulsed magnet misfire events

Beam abort caused by pulsed magnet misfire

• 49 events in 2020a, 2020b.

Pulsed magnet misfire events

- ~ 100 misfire/day in Feb./Mar. (16 controllers)
- Main control software and event receiver driver were replaced by improved one (Apr. 9th~). # of misfire events decreased to almost zero.
- Misfire appears again (Jun. 10th 22:30~16th 3:23).

network trouble?

(*) including all misfire events (even no beam)

Beam abort caused by injection beam w/ abnormal energy

Horizontal position (mm)

Vertical position (mm)

Bunch charge (nC)

Abnormal energy beam

- Collimator at ECS of linac end -

- Klystron down or rf phase trip could cause energy change.
- In the case of e+ beam, ECS (in linac end) can correct it to a certain extent. Beam can go through BT and into MR.
- To prevent such beam, collimator will be installed in this summer maintenance.

Summary and plan

• RF gun

- no significant fault
- Laser cleaning can cure degradation of Qe.
- Bunch charge feedback works fine.
- Laser position feedback will be implemented.
- Diffractive optical element (DOE) will be installed for transverse laser beam shaping (flat top).

• Flux concentrator

- no significant fault
- New flux concentrator will be installed for higher e+ bunch charge for higher e+ bunch charge.
- Steering magnet and BPM will be installed inside solenoid section.

Summary and plan (cont'd)

- Beam abort caused by bad quality beam (orbit, energy)
 - Pulsed magnet misfire (orbit)
 - Control software have been improved.
 - Install collimator at ECS (linac end) in this summer shutdown.
- Feedback loops
 - Orbit feedback Sector2, Sector3-5 work fine.
 - RF phase feedback in many stations work well.
- Vertical pulsed bends and chambers will be replaced new one for 50 Hz operation of thermionic e- gun (LER, PF, PF-AR).
- Beam base alignment at BT line is now in progress.

Backup

2020/6/21 32

Linac Beam Parameters for KEKB/SuperKEKB

Stage	KEKB (final)		Phase-I		Phase-II		Phase-III (interim)		Phase-III (final)	
Beam	e+	e–	e+	e–	e+	e–	e+	e–	e+	e–
Energy	3.5 GeV	8.0 GeV	4.0 GeV	7.0 GeV	4.0 GeV	7.0 GeV	4.0 GeV	7.0 GeV	4.0 GeV	7.0 GeV
Stored current	1.6 A	1.1 A	1.0 A	1.0 A	_	_	1.8 A	1.3 A	3.6 A	2.6 A
Life time (min.)	150	200	100	100	-	_	-	-	6	6
	primary e- 10		primary e- 8	1	0.5	1	2	2	primary e- 10	4
Bunch charge (nC)	→ 1	1	→ 0.4						→4	
Norm. Emittance	1400 310	310	1000	130	200/40	150	150/30	100/40	<u>100/15</u>	<u>40/20</u>
(γβε) (μmrad)				(Hor./Ver.)		(Hor./Ver.)	(Hor./Ver.)	(Hor./Ver.)	(Hor./Ver.)	
Energy spread	0.13%	0.13%	0.50%	0.50%	0.16%	0.10%	0.16%	0.10%	<u>0.16%</u>	0.07%
Bunch / Pulse	2	2	2	2	2	2	2	2	2	2
Repetition rate	50 Hz		25 Hz		25 Hz		50 Hz		50 Hz	
Simultaneous top-up injection (PPM)	3 rings (LER, HER, PF)		No top-up		Partially		4+1 rings (LER, HER, DR, PF PF-AR)		4+1 rings (LER, HER, DR, PF, PF-AR)	

2020/6/21 33

Beam emittance example (~1 nC) w/ multiple wire scanners

Pulse to pulse

e-/e+ beam switching

- Pulsed steering magnet control e- beam orbit.
- Low emittance e- beam goes through a hole at center of beam line.

for low emittance e- beam

Qe of photocathode (Ir7Ce2, Ir2Ce)

Simultaneous beam operation (w/ thermionic and rf e- gun)

Stable simultaneous top up injection to 4 storage rings (HER, LER, PF, and PF-AR) w/ thermionic gun, rf gun, pulsed magnets.

Previous software structure

In some events, LabVIEW/EPICS IOC communication is delayed or failed.

New software structure (Apr. 9 ~)

- NI VISA based EVR driver (w/o EPICS IOC for EVR control) (H. Saotome)
- Most part of control core (LabVIEW) was rewritten (Y. Enomoto)

Measured emittance

e+ beam (Phase3.2(6.Nov.2019))

e- beam (Phase3.2(4.Dec.2019))

Phase3.3	e+	e-
γεχ [μm]	150	100
γεу [μm]	30	40
σδ [%]	$0.16(1\sigma)$	0.1(1σ)

Emittances increase

- DR \rightarrow Sector3
- BT1 \rightarrow BT2

Beam study will be continued

Emittances increase

- $C \rightarrow Sector3$
- BT1→BT2

Beam study will be continued

Dispersion measurement and correction

- Horizontal dispersion leakage from J-ARC causes the beam position jitter.
- Applying fudge factors to quads in J-ARC, dispersion is well corrected.

Vertical emittance vs. HER Injection efficiency

1. Injection efficiency and background

The injection efficiency increased as emittance decreased by tuning day by day.

2020/6/21 45

Monitors

- Beam position monitor (x 103)
 - Four strip line electrodes (x 97)
 - Measurement precision ~ 10 μm
 - Eight strip line electrodes (x 6) (J-ARC, LTR x2, PF BT, HER BT, LER BT)
- Profile monitor (x 104)
 - Al₂O₃/CrO₃ (AF₉95R, Demarquest Co.). (t: 1 mm, 0.1 mm), YAG:Ce (t: 0.1 mm)
- Wire scanner (WS) (x 6)
 - SectorA, B, C, 2, 3, 5
- Streak camera (ST) (x 2)
 - SectorA, €, 3
- RF monitors for klystron, SLED, acc. structure

Pulsed magnet system

- Pulsed quads (x 28) (w/ ceramic duct) and steering (x 36) were installed at Sector3 to Sector5 in 2017 (on movable girder).
- Pulsed bend, additional quad and steering were installed in 2018 summer and winter shutdown.
- PXIe based control system (Windows 8.1, LabVIEW, EPICS) have worked fine w/o any serious trouble.

• Power supply stability: 0.01% (24 hours)

e+ source setup 2

FC head + BC + target = FC assembly

Movable girder for accelerating structure

- Six movable girders have been installed in Sector3 (in summer shutdown of 2019).
 - Four 2-m-long accelerating structures are mounted on one girder.
- It could help to suppress emittance growth due to misalignment.

