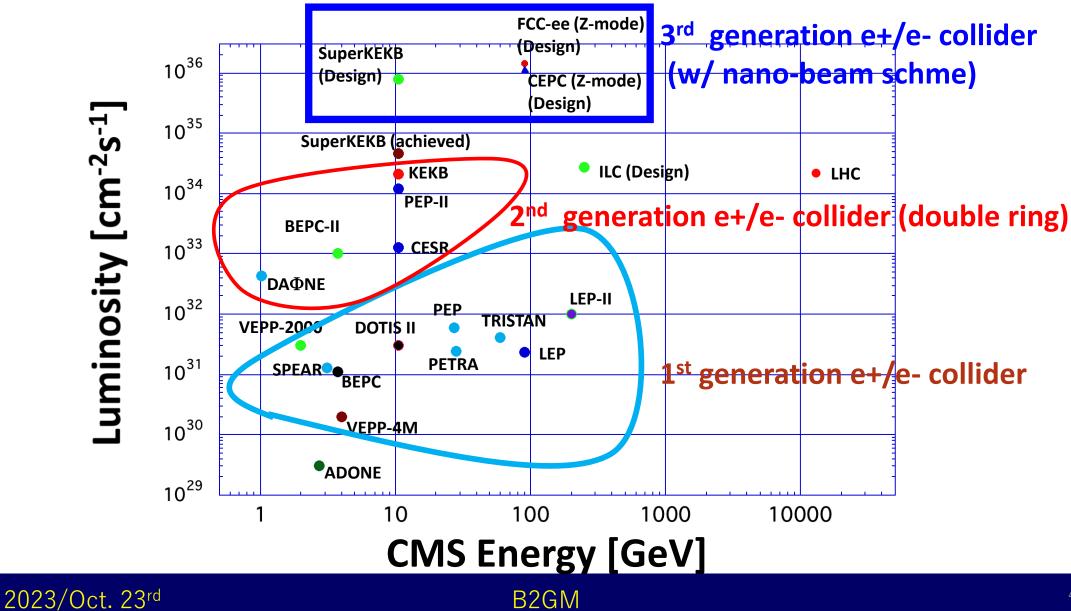

Introduction to SuperKEKB

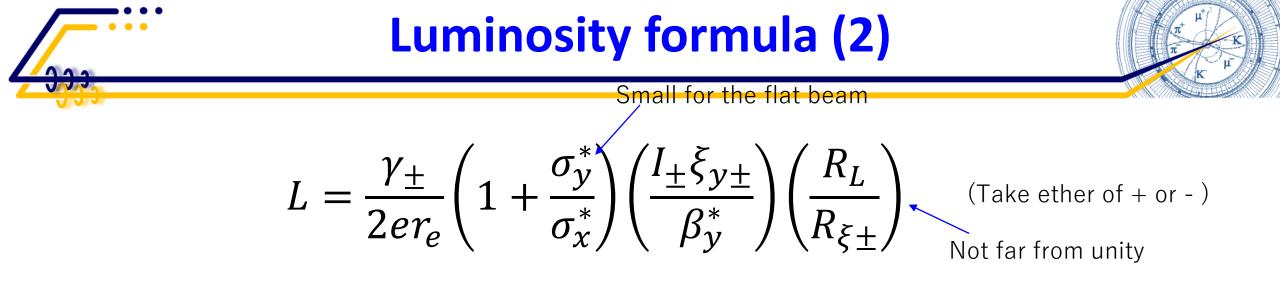
- Introduction to SuperKEKB, including explanation about some important optical parameters, nano-beam scheme, and so on.
- Contents
 - Luminosity formula
 - Nano-beam scheme
 - Large Piwinski angle collision
 - Crab waist scheme
 - Some important optics parameters
 - Emittance
 - X-Y coupling
 - Chromatic coupling
 - Dynamic aperture

Luminosity formula (1)

$$L = \frac{N_{-}N_{+}}{2\pi\sqrt{\sigma_{x-}^{2} + \sigma_{x+}^{2}}\sqrt{\sigma_{y-}^{2} + \sigma_{y+}^{2}}} n_{b}f_{rev}R$$


- *N*_{-,+}: Number of paricles in a bunch (e-,e+)
- n_b : number of bunches -> drastically increased in double rings
- *f*_{rev} : revolution frequency
- R : Geometrical Loss factor

Luminosity Comparison

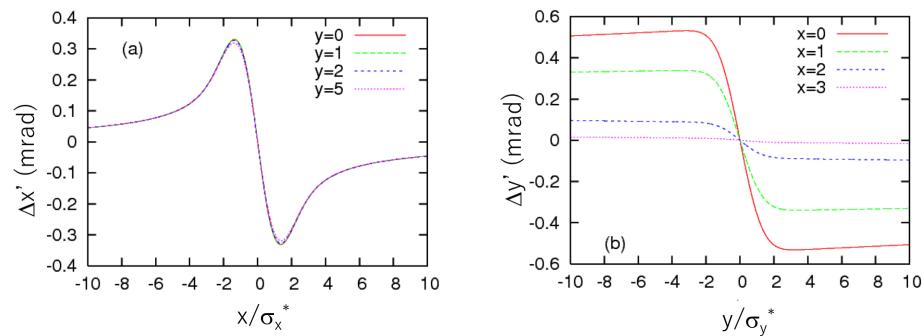


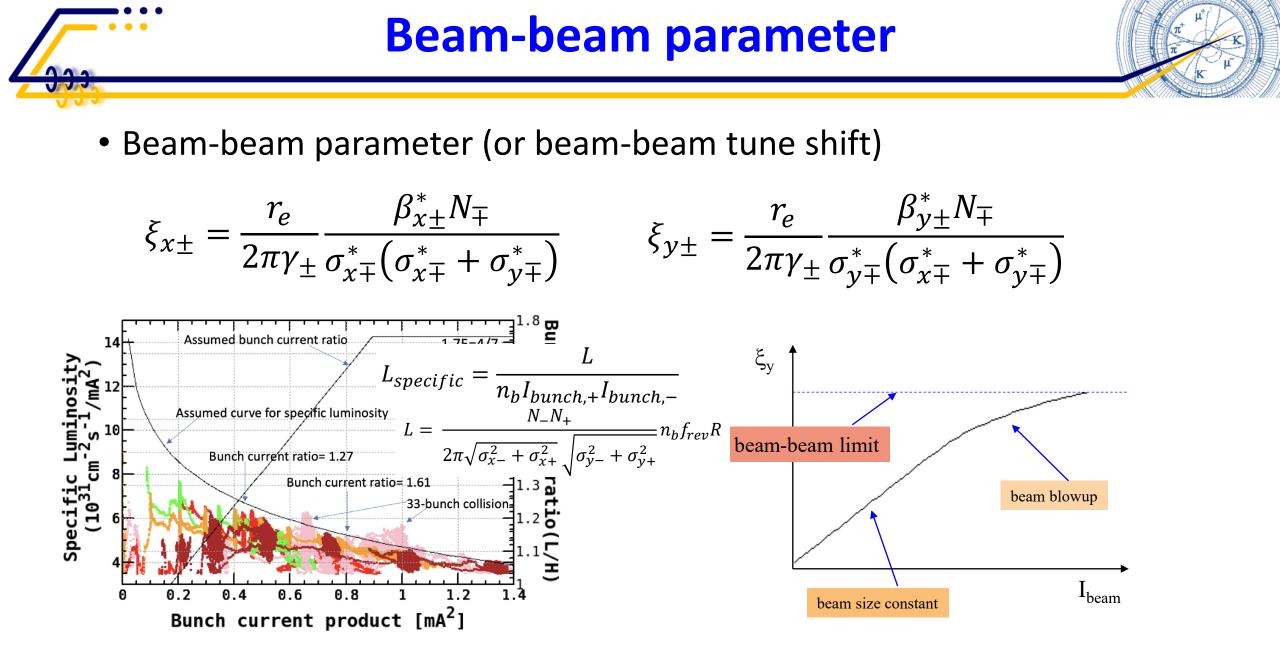
B2GM

000

In the energy region where the beam-beam interaction is important, this formula is commonly used. This formula is derived with an assumption that the beam sizes at IP (σ_x^* , σ_y^*) are equal between two beams.

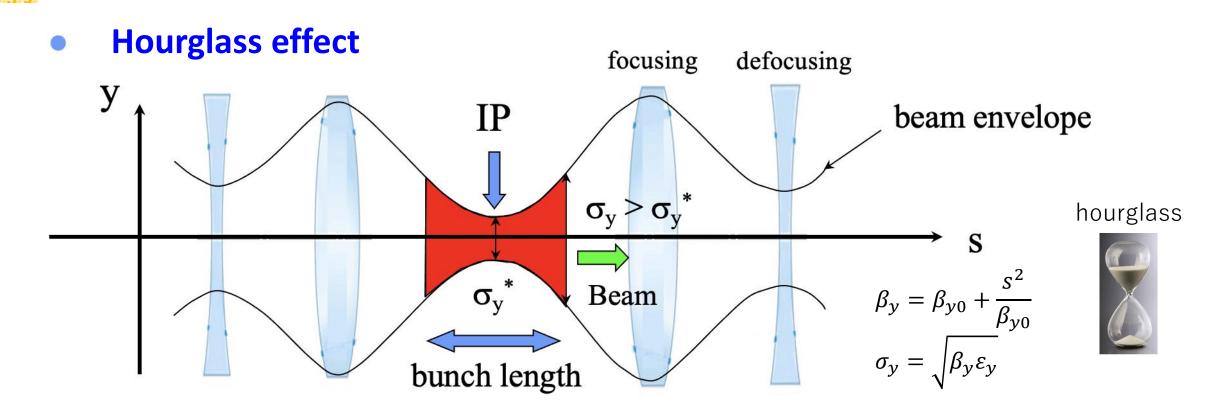
- γ : Lorentz foctor
- σ_x^*, σ_y^* : horizontan and vertical beam sizes
- *I* : Total beam current
- β_v^* : vertical beta function at IP
- ξ_y : vertical beam-beam parameter
- R_{ξ} : Geometrical Loss factor for beam-beam parameter


Luminosity is mainly determined by those three parameters.



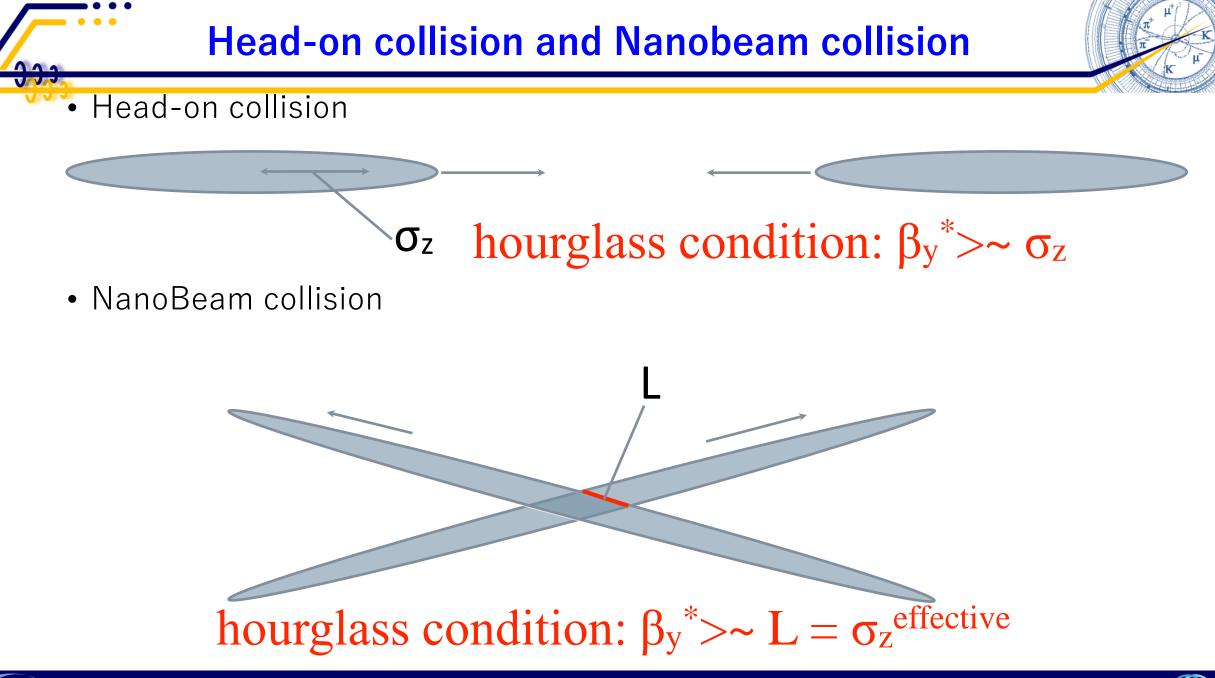
• Very nonlinear force

-> Linear part (near bunch center) gives focusing force like quadrupoles

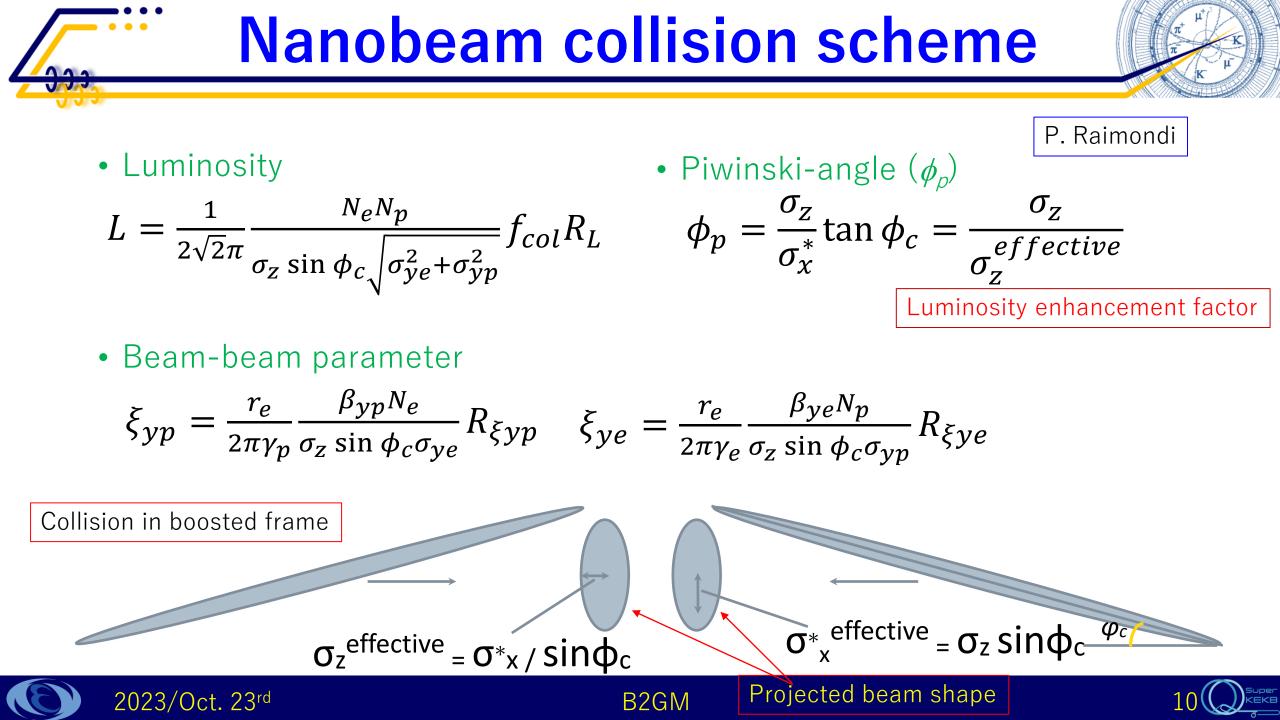


2023/Oct. 23rd

Luminosity limitation due to hourglass effect


• Luminosity does not increase by squeezing βy^* down to less than ~ σ_z (bunch length). [ex. KEK σ_{z_1} ~ 6mm βy^* : 5.9mm)

- Beam size increase in the range of bunch length (geometrical degradation).
- Effects of beam-beam interaction is stronger at larger βy position (-> additional beam-beam blowup).

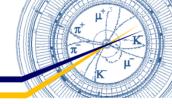


Machine Parameters

μ^+	
πμ	
K	\mathbb{R}

	KEKB (LER, achieved)	SuperKEKB (LER, design)	SuperKEKB (LER, achieved)
Crossing angle	±11 mrad	\pm 41.5 mrad	±41.5 mrad
β_{x}^{*}	1.2 m	32 mm	80 mm
β_y^*	5.9 mm	0.27 mm	1 mm (0.8 mm)
ε _x	18 nm	3.2 nm	4.0 nm
ε _y	169 pm	8.64 pm	50 pm
ϵ_y/ϵ_x	0.94 %	0.27 %	1.25 %
σ_x^*	147 μm	10.1 μm	17.9 μm
$\sigma_x^{\ *}$ effective	-	249 µm	249 µm
σ_y^*	~1 µm	48 nm	223 nm
σ_{z}^{*}	~7 mm	6 mm	~6 mm
σ_{z}^{*} effective	-	0.24 mm	0.43 mm
$\phi_{Piwinski}$	0.524	24.7	13.9

Nano-beam scheme = Large Piwinski angle collision



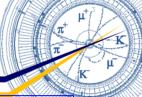
Crab waist scheme

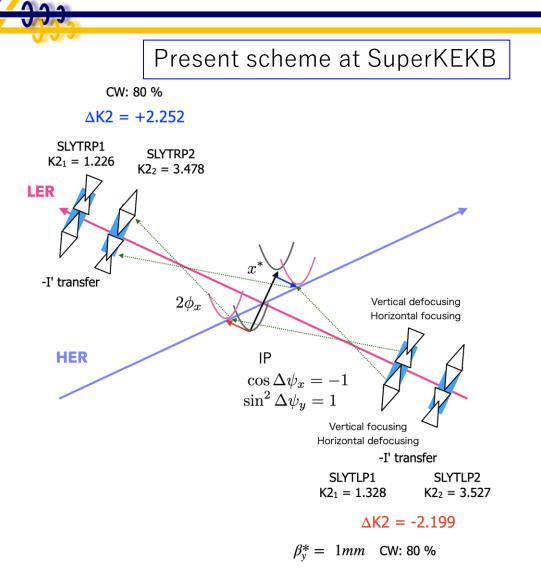
Collision Point (CP)

Original waist points of e+

- Collision point with the center of the other beam for a partice with a horizontal offset
 - Due to large crossing angle, a parcle with horizontal offset collide with the center of the other beam at a location offset from the waist (minimum of β_y).
 - The vertical beam-beam kick depends on the horizontal offset.
 -> X-Y coupling resonances driven by the beam-beam interaction -> beam-beam blowup
- Crab waist scheme
 - Waist points of one beam are shifted so that there are aligned along the center of the other beam.
 The X-Y coupling resonaces can be suppressed.

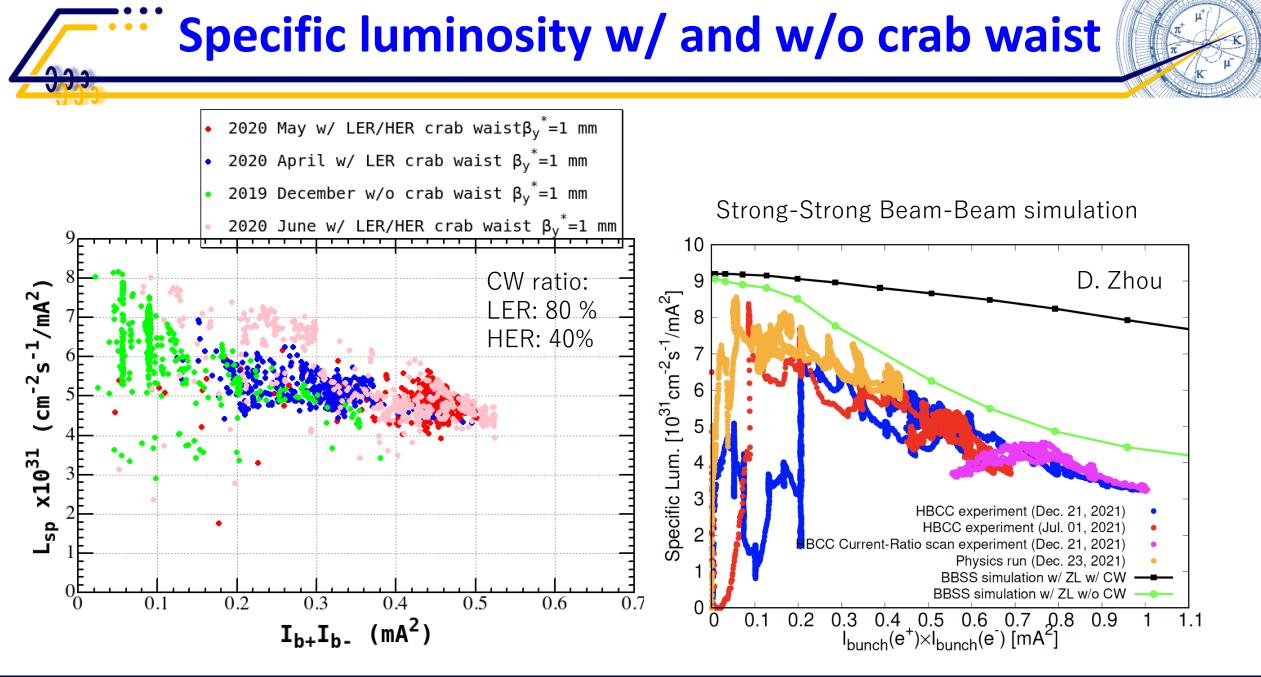
Shifted waist points





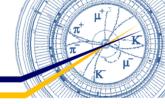
How to realize crab waist scheme

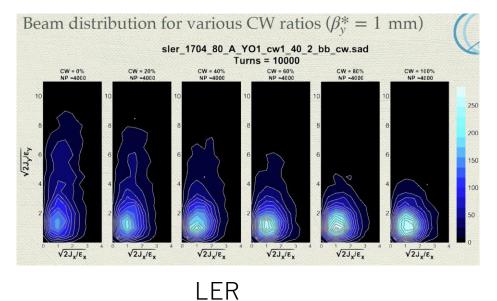
B2GM

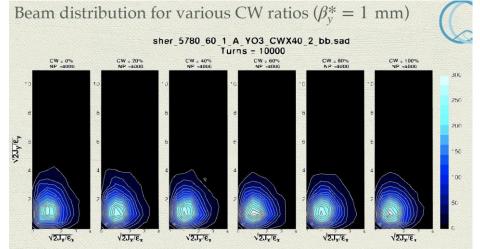

2023/Oct. 23rd

--Crab waist scheme is realized by unisg a pair of sextupole magents which have appropriate betatron phase relations with IP.

- --At the design stage, crab waist scheme was considered to be a backup plan.
- --Problem, which was thought to be serious, was a short beam lifetime due to narrow dynamic aperture.






Strong-weak simulation on crab waist

		LER	HER	
Tunes		44.540/46.601/-0.0235	45.506/43.554/-0.0272	
Long. damoing	turns	2270	2880	
Beam-beam $\xi_{x/y}^{a}$		$0.004 \ / \ 0.057$	0.004 / 0.061	
Beam current	А	1.99	1.14	
Bunches/ring		25	00	
Half crossing angle	mrad	41.5		
Luminosity	nb/s	94	1.3	

K. Oide

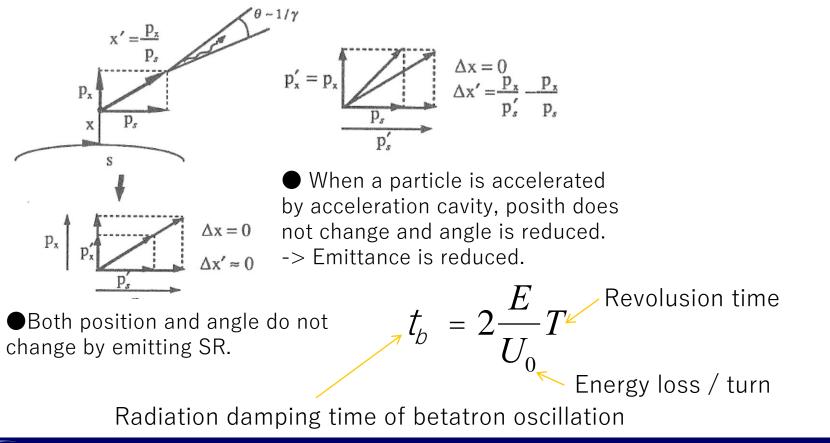
HER

Summary of operation with crab waist scheme

- Benefits of use of crab waist scheme
 - Suppression of beam-beam blowup
 - Specific luminosity was improved.
 - Increase of the bunch currents of both beams
 - W/o crab waist, beam injections was limited due to beam blowup.
- Beam lifetime issue
 - Dynamic aperture shrinks w/ crab waist and the lifetime decrease w/ crab waist was expected.
 - But in βy*= 1mm case, no lifetime decrease was observed in LER and HER, since the collimator physical aperture is already very narrow.
 - On July 1st 2021, the lifetime of LER increased with wider collimators and so lifetime seems to be determined by physical aperture.
 - In case of lower βy^* , the lifetime w/ crab waist will be an issue.

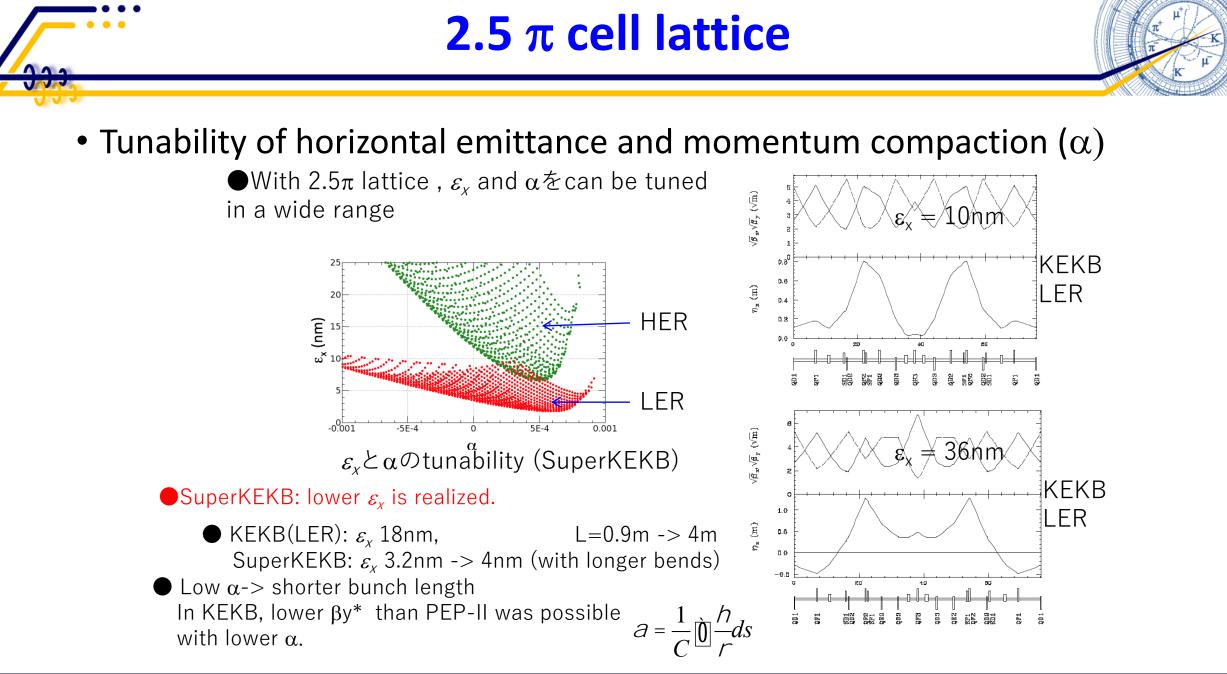
Emittance

- Horizontal emittance
 - Determined by the balance between radiation damping and radiation excitation.
 - KEKB and SuperKEKB rings have a wide range of tunability of emittance and momentum compaction factor.



Radiation damping

• Radiation Damping of betatron oscillation



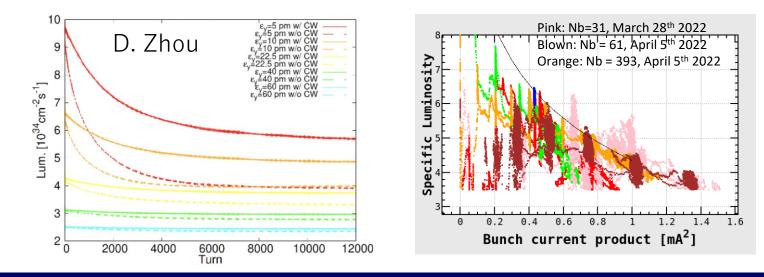
 $\Delta x_{\beta} = \eta_x \frac{u}{E}$ $\Delta x_{\beta}' = \eta_x' \frac{u}{E}$

When a photon is emitted at a place where dispersion is non-zero, a betatron oscillation is excited. Quantum excitation becomes weaker with smaller dispersion.

Vertical emittance

dispersion opening angle

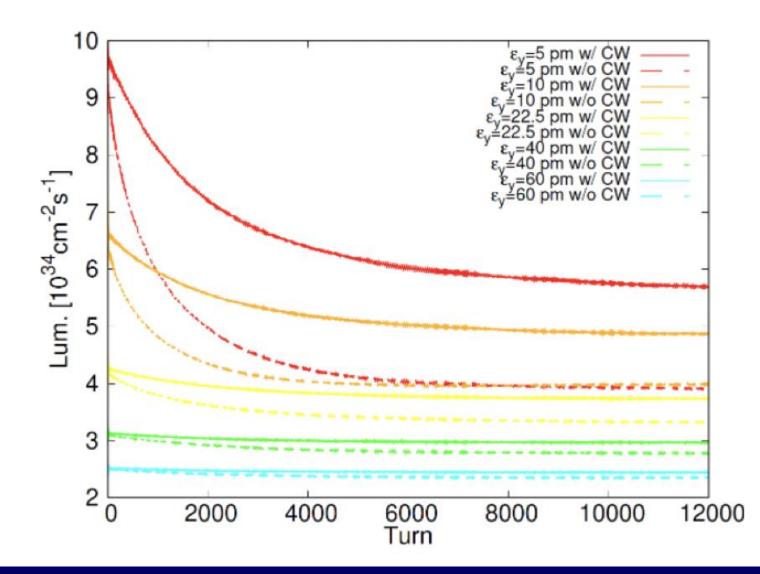
- Vertical emittance (single beam, zero current) $e_y = ke_x + A(h_y^{rms})^2 + e_y^{OA}$
 - x-y coupling
 - Machine errors (such as mis-alignment of Q or SX mganets.)
 - The coupling correction can reduce residual coupling value.
 - Vertical dispersion
 - Machine errors (such as mis-alignment of Q or SX mganets.)
 - The dispersion correction can reduce residual dispersions.
 - Vertical dispersion in design

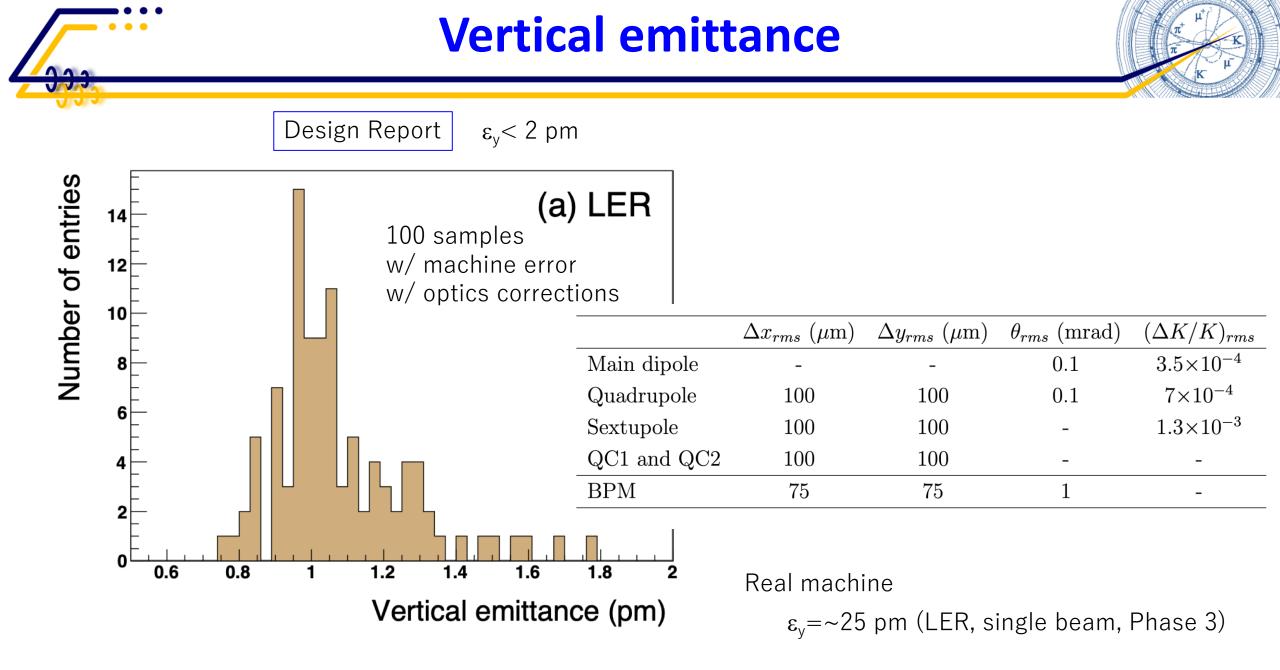

coupling

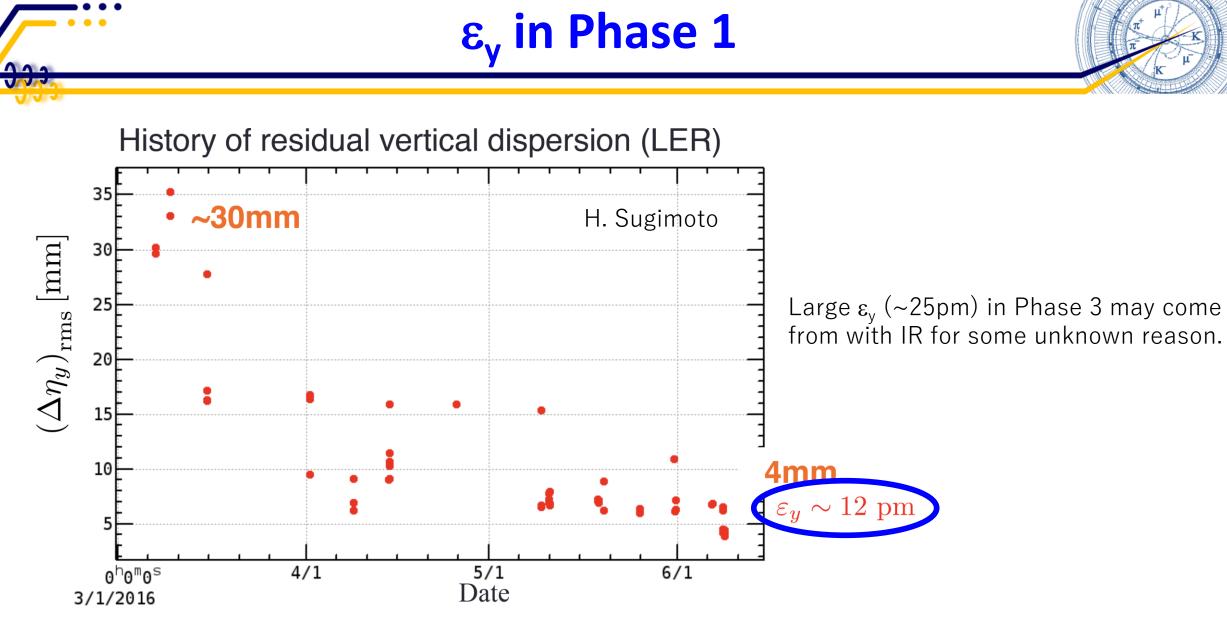
- Fringe field of detector solenoid, vertical bending magnets -> (small, ε y ~ 0.33 pm, LER)
- Opening angle of radiation
 - Usually negligible (or ultimate limit of vertical emittance)
- Others
 - Synchro-beta emittance (a.k.a anomalous emittance)
 - Beam-beam blowup (large)
 - Instablility (TMCI, Electron clouds)

Luminosity vs single beam vertical emittance

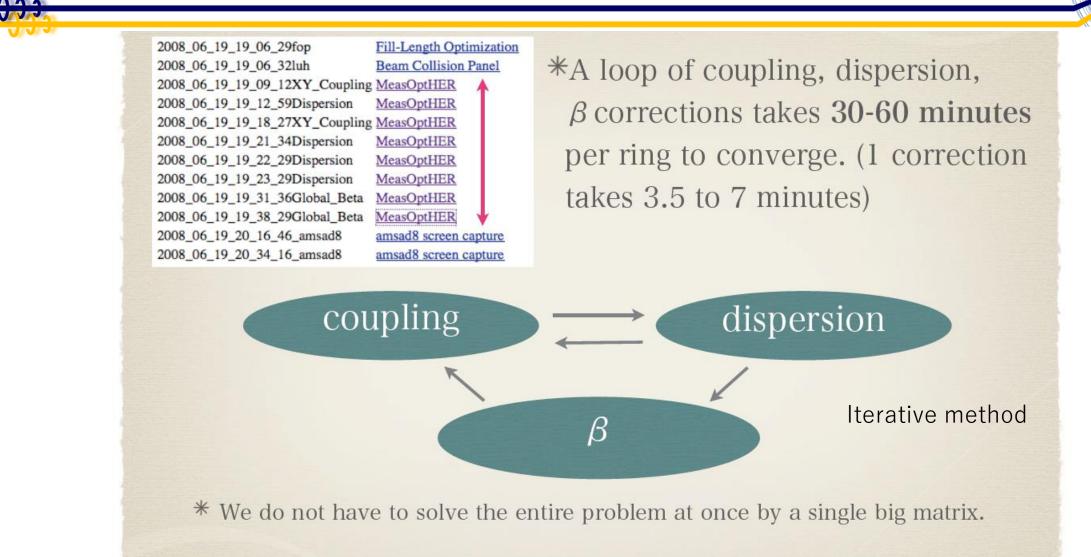
- Ways to better beam-beam performance
 - Beam-beam simulations predict better beam-beam performance with
 - Smaller vertical emittance in single beam (matter of optics corrections)
 - Higher crab waist ratio in HER (strength)
 - Identification of causes of discrepancy between simulations and experiments
 - Better working points
- Beam-beam parameters
 - Achieved values in physics runs: : $\xi y(\text{LER}) = 0.0407$, $\xi y(\text{HER}) = 0.0279$
 - Achieved values in high bunch collision study: $\xi y(LER) = 0.0565$, $\xi y(HER) = 0.0434$
 - By increasing bunch currents in physics run, higher ξ y and then a higher luminosity is expected.




Luminosity vs single beam vertical emittance



B2GM



B2GM

• Optics correction and hardware calibration are iteratively repeated.

2023/Oct. 23rd

Wiethod of optics correction (KEKB, SuperKEKB

* Although these corrections are not independent, their cross-talks are smaller than the diagonal parts, so the iteration converges quickly.

Chromatic coupling correction in LER

400

350

300

250

200

150

100

50

200

175

150

125

100

75

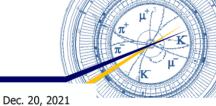
50

25

46.54

(md)

46.54


46.55

46.56

46.56

(md)

ŝ

 $\Delta r_1' = +1$

 $\Delta r_1' = 0$

 $\Delta r_1' = -1$

 $\Delta r_1' = -2$

46.59

46.59

46.58

46.58

 $\Delta r_2' = 0.0$

 $\Delta r_{2}^{\prime} = +0.2$

 $\Delta r_{2}^{\prime} = +0.1$

 $\Delta r_{2}^{\prime} = -0.05$

 $\Delta r_{2}^{\prime} = -0.1$

 $v_x - v_y - 2v_s = n$

46.57

 $v_x - v_y - 2v_s = n$

46.57

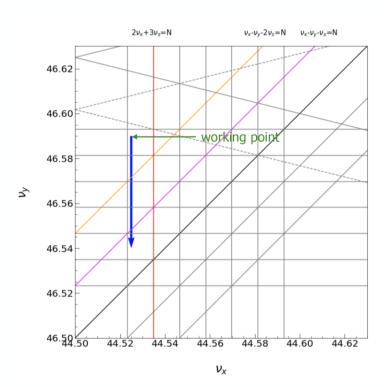
 v_{v} (model)

 v_v (model)

 $\beta_{\nu}^* = 1 \ mm$

single beam

March 14, 2022


 $\beta_{\nu}^* = 1 \ mm$

 $\Delta r_1' = -1$

single beam

is optimal.

 $\Delta r_2' = 0$

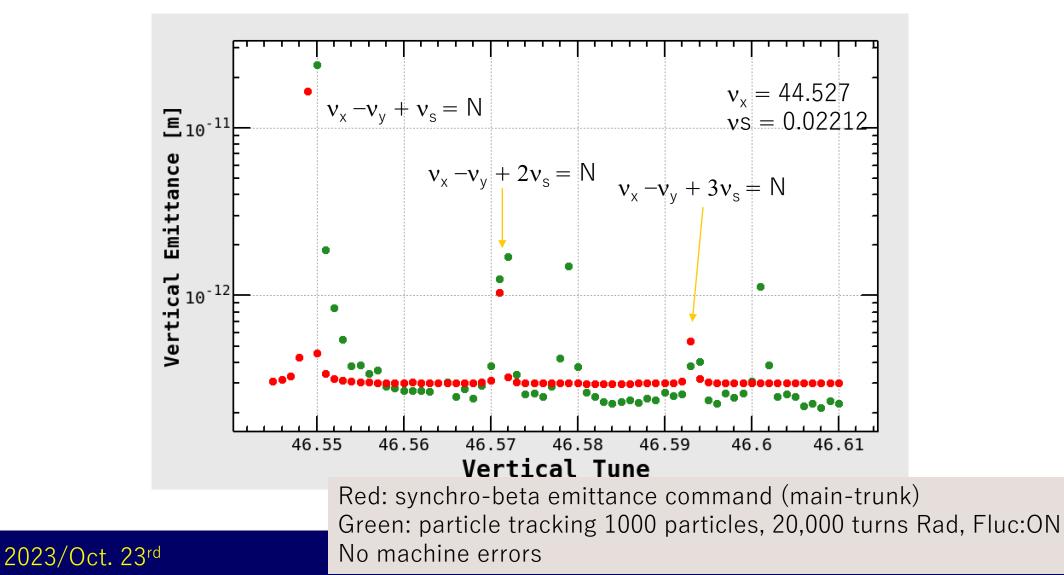
The rotatable sextupoles (6 families for right and left side of IP) are used to make the first synchro-beta coupling resonance weak together with the second resonance.

SLYTLPs and SLYTRPs were not used here.

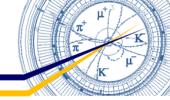
Rotatable sextupoles: M. Masuzawa, T. Kawamoto et al.

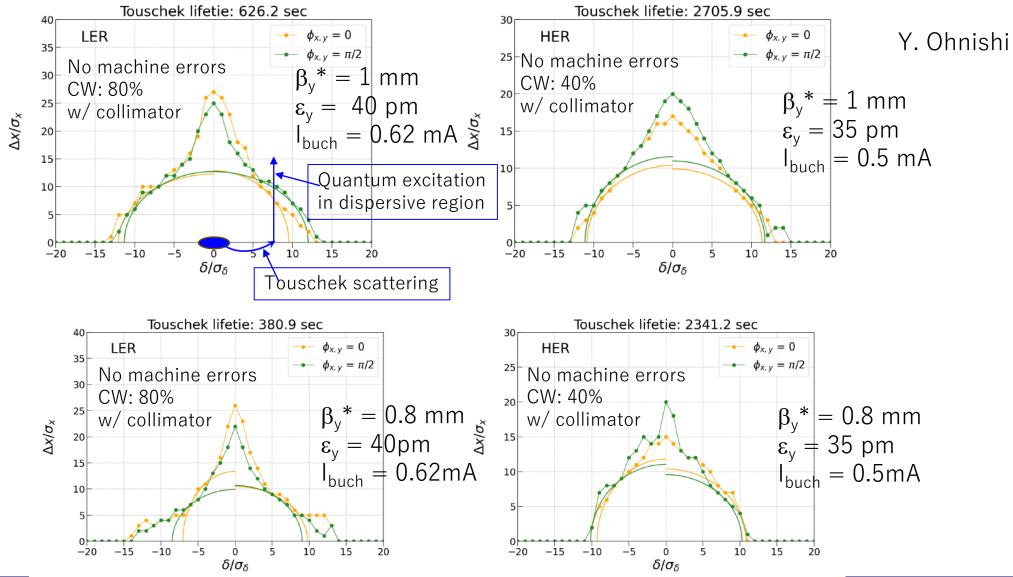
Synchro-beam emittance depends on chromatic X-Y coupling and be corrected by using skew-sextupoles. Large chromatic X-Y coupling at IP could degrade the luminosity.

46.55

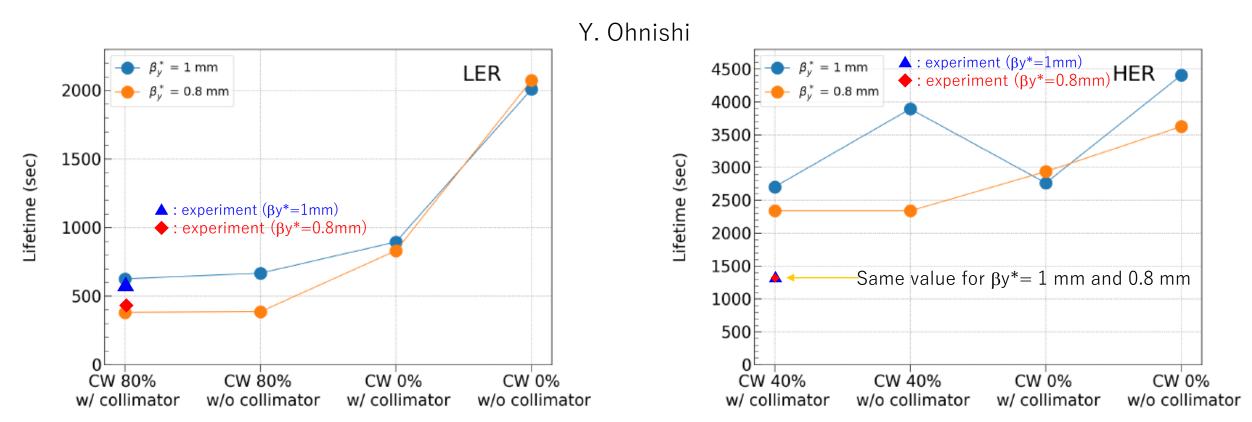

005

^{...} Synchro-beta emittance (LER) βy* = 1mm


Dynamic aperture


- Dynamic aperture
 - Stable region in (x,x',y,y', $\Delta E/E,\tau$) phase space
 - <-> physical aperture (usually determined by the collimator aperture)
 - In general, dynamic aperture shrinks with lower βy^* .
 - By optimizing settings of sextupole magnets, dynamic aperture can be improved.
- Beam lifetime
 - In SuperKEKB, Touschek lifetime is dominant. (others: beam-gas Coulomb scattering, radiative BhaBha scattering)
 - Touschek lifetime is usually determined by the dynamic (or physical) aperture in horizontal-energy direction.
- Beam injection efficiency
 - In SuperKEKB, the injection efficiency is limited by the dynamic (or physical) aperture mainly in the horizontal direction.

Dynamic aperture simulation by SAD



000

Touschek beam lifetime (simulation & experiment)

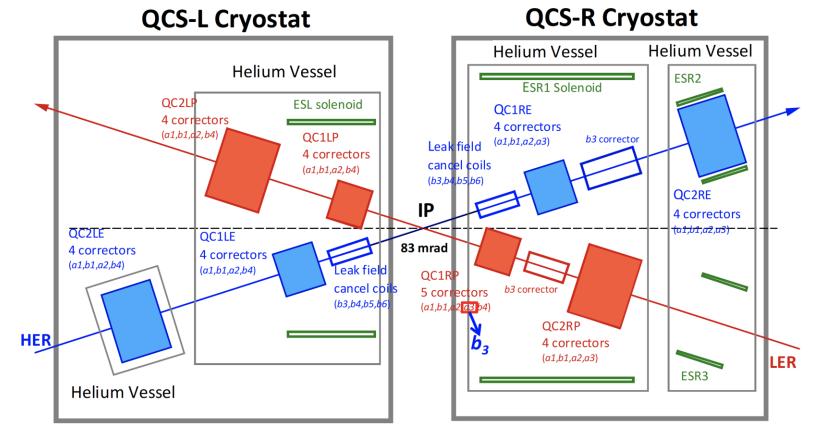
- LER lifetimes measured are consistent with simulations. HER lifetimes measured are ~ half of simulation.
- LER (CW:80%, βy*:1mm): Physical aperture is slightly narrower than the dynamic aperture.
- LER (CW:80%, βy*:0.8mm): Dynamic aperture is narrower than physical aperture.
- LER (CW:40%, βy^* :1mm): Physical aperture is narrower than the dynamic aperture.
- LER (CW:40%, βy*:0.8mm): Dynamic aperture is narrower than physical aperture.

B2GM

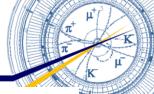
Error of cancel coils for QC1P leakage field

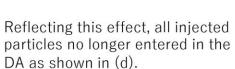
	Table 24: Me	asured integral leak	fields at R _{ref} =10 mm	1	_
	QCS!	L, Tm	QCS]	
Mag. type	without	with	without	with]
	cancelling	cancelling	cancelling	cancelling	
<i>b</i> ₃	3.36×10 ⁻³	2.32×10 ⁻⁵	-3.53×10 ⁻³	1.27×10^{-5}	1
<i>b</i> ₄	-7.58×10 ⁻⁴	-2.83×10 ⁻⁶	8.02×10 ⁻⁴	4.39×10 ⁻⁶	1
<i>b</i> 5	1.57×10^{-4}	3.66×10 ⁻⁶	-1.67×10 ⁻⁴	-3.73×10 ⁻⁶	1
<i>b</i> ₆	-2.98×10 ⁻⁵	7.8×10^{-7}	3.24×10 ⁻⁵	2.35×10 ⁻⁶	
<i>a</i> 3	-2.42×10^{-4}	-3.88×10 ⁻⁴	-2.52×10 ⁻⁴	-4.93×10 ⁻⁴	
<i>a</i> 4	-5.88×10 ⁻⁵	-1.16×10 ⁻⁴	4.94×10 ⁻⁵	1.71×10 ⁻⁴] [. 🖓
<i>a</i> 5	-1.48×10-5	-1.48×10-5	6.26×10 ⁻⁶	-8.31×10-6	Skew components
<i>a</i> ₆	1.88×10^{-5}	1.48×10 ⁻⁵	-4.31×10 ⁻⁶	-1.09×10 ⁻⁶	are increased.
			I		J

b3(b4) and a3(b4) coils are excited by the same power supply.

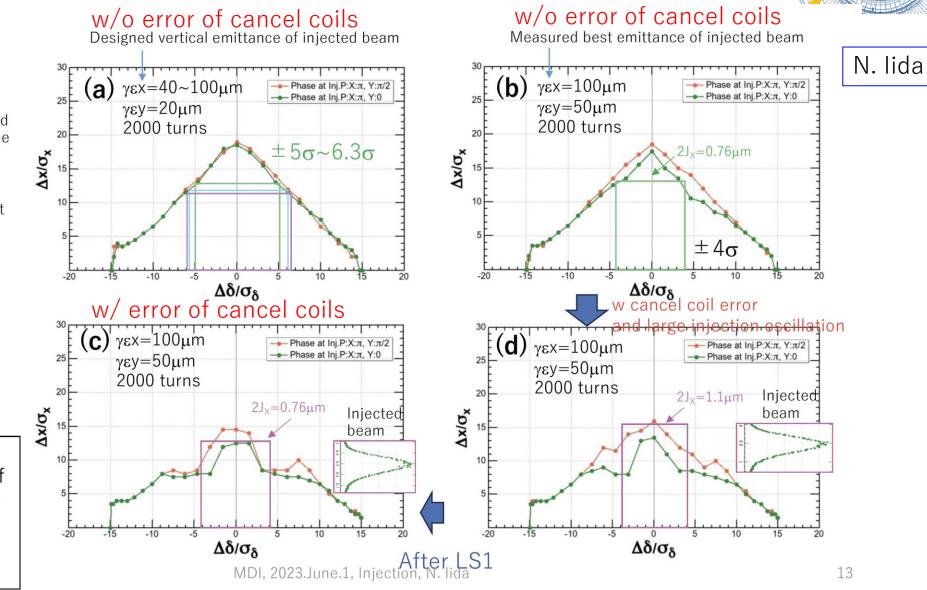

Almost no effect to beam lifetime. Beam injection efficiency may be affected

QCS correction coils


4 SC main quadrupole magnets: 1 collared magnet, 3 yoked magnets 16 SC correctors: a1, b1, a2, b4 4 SC leak field cancel magnets: b3, b4, b5, b6 1 compensation solenoid 4 SC main quadrupole magnets: 1 collared magnet, 3 yoked magnets 19 SC correctors: a1, b1, a2, a3, b3, b4 4 SC leak field cancel magnets: b3, b4, b5, b6 3 compensation solenoid

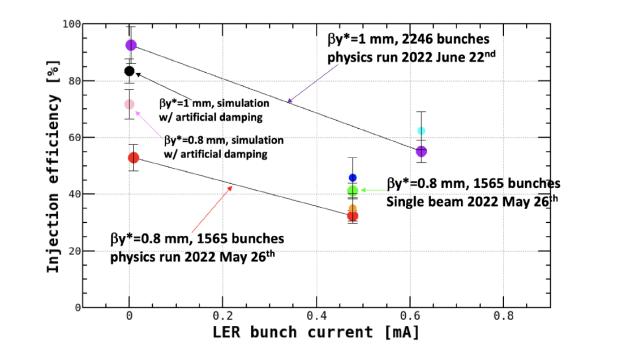


HER injection with error of cancel coil



Simulation

However, by widening the aperture near the injection point and by an improvement of the magnetic field of the septum magnet in LS1, it was found that the situation recovers to some extent as shown in (c).


In the future

Tracking simulation of HER injection under the conditions below to obtain the injection efficiency.

Injection efficiency (simulation and experiments)

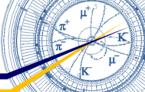
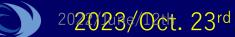


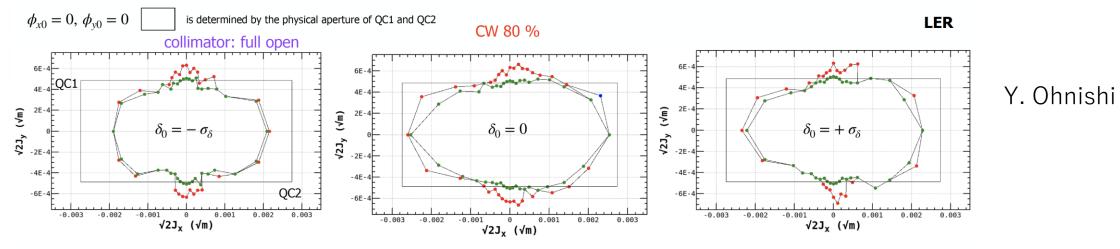
Figure 5. Injection efficiency as a function of the bunch current in LER. Both cases of β_y^* at 0.8 mm and 1 mm are shown. There is strong beam current dependence. Here, we plot the dependence as the bunch current dependence. The data in cyan, blue, and orange are obtained by the simulations. The data in back and pink are obtained by the simulation with artificial extra damping to the oscillation of the center-of-gravity of the injecting bunch with a damping time of 100 turns which is intended to simulate the effect of the bunch-by-bunch feedback system.



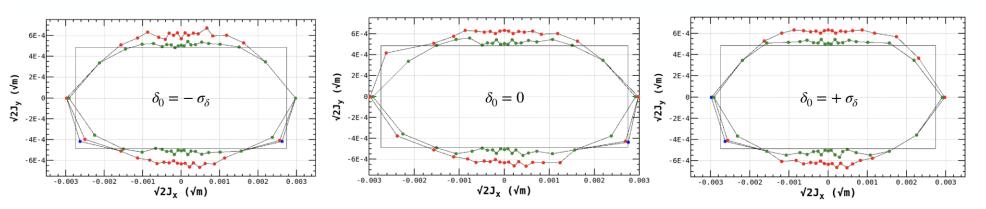
Comparison of machine parameters

			IPAC2020 K. Shibata		IPAC2022 at present			
	KEKB achieved		SuperKEKB 2020 May 1 st		SuperKEKB 2022 June 8 th		SuperKEKB design	
	LER	HER	LER	HER	LER	HER	LER	HER
I _{beam} [A]	1.637	1.188	0.438	0.517	1.321	1.099	3.6	2.6
# of bunches	1585		783		2249		2500	
I _{bunch} [mA]	1.033	0.7495	0.5593	0.6603	0.5873	0.4887	1.440	1.040
β y* [mm]	5.9	5.9	1.0	1.0	1.0	1.0	0.27	0.30
ξγ	0.129	0.090	0.0236	0.0219	0.0407 (0.0565)ª	0.0279 (0.0434)ª	0.0881	0.0807
Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	2.	11	1.	57	4.0	65	8	0
Integrated Luminosity [ab ⁻¹]	1.	04	0.	03 doubl	ed 0.4	40	5	0

a) High bunch current collision study


Thank you for your attention.

Inter-University Research Institute Corporation High Energy Accelerator Research Organization (KEK) 大学共同利用機関法人 高エネルギー加速器研究機構 (KEK)



Transverse aperture (LER)

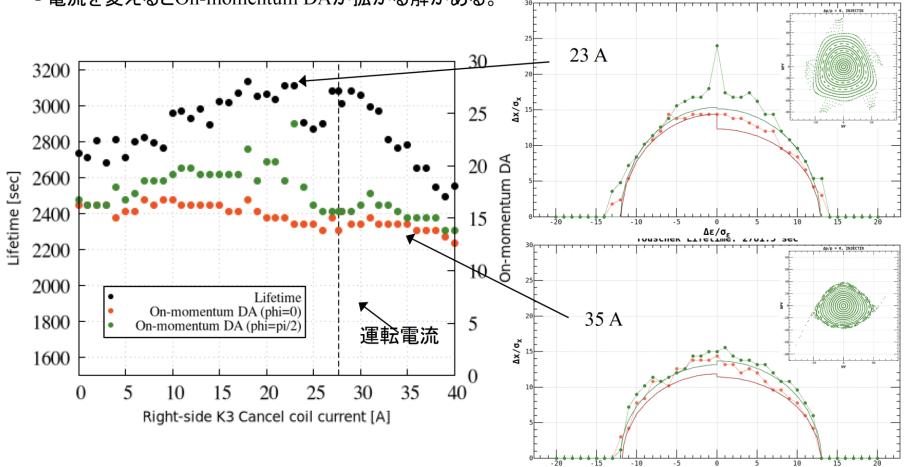
AQC1: AY =20.0 mmTested three differentHorizontal dynamic aperture is reduced by the crab waist scheme.AQC1: AY =18.0 mmvertical apertures forIf the vertical physical aperture of QC1P is increased to 17 mm, the stable region is extended.AQC1: AY =13.5 mmQC1(Above 17 mm is limited by the dynamic aperture.)

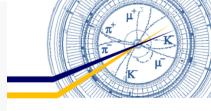
CW 0 %

Beam lifetime estimation (at the design stage)

	KEKB (design)		KEKB (op	peration)	SuperKEKB		
	LER	HER	LER	HER	LER	HER	
Radiative Bhabha	21.3h	9.0h	6.6h	4.5h	28min.	20min.	
Beam-gas	45h ^{a)}	45h ^{a)}			24.5min. ^{b)}	46min. ^{b)}	
Touschek	10h	-			10min.	10min.	
Total	5.9h	7.4h	~133min.	~200min.	6min.	6min.	
Beam current	2.6A	1.1A	1.6A	1.1A	3.6A	2.6A	
Loss Rate	0.12mA/s	0.04mA/s	0.23mA/s	0.11mA/s	10mA/s	7.2mA/s	
a) Bremsstrahlung 4nC@25Hz 2.9nC@25H b) Coulomb scattering, sensitive to collimator settin							

As for loss rate, beam loss accompanied with the beam injection should be added.




R側のB4(K3)コイル電流とDA

Touschek Lifetime: 3110.4 sec

Δε/σε

- B4コイルの電流を変えるとK3とSK3が変わる。
- R側のB4(K3)キャンセルコイルの電流を変えるとDAはどうなるか?
- -> DAとしては運転電流付近が最適。
- 電流を変えるとOn-momentum DAが拡がる解がある。

- Peak luminosity 4.65 x10³⁴ (cm⁻²s⁻¹), June 8, swing, 2022
- Belle II HV ON

parameter	LER	HER	unit
Beam current	1321	1099	mA
Number of bunches	2249		
Bunch current	0.587	0.587 0.489	
Beam-Beam parameter $\xi_{\rm y}$	0.0407 0.0279		
Σy*	0.303	μm	
σ_y^*	0.215	μm	
Tunes (x/y)	44.525 / 46.589 45.532 / 43.573		
Specific luminosity (x10 ³¹)	7.21	cm ⁻² s ⁻¹ /mA ²	
Luminosity (x10 ³⁴)	4.65	cm ⁻² s ⁻¹	

Slightly modified parameter set

Beam energy	[GeV]	45.6	80	120	182.5	
Layout			PA3	1-3.0		
# of IPs			2	4		
Circumference		90.65	58816			
Bend. radius of arc dipole	[km]		10.	021		
Energy loss / turn	[GeV]	0.0391	0.374	1.89	10.29	
SR power / beam	[MW]		5	0		
Beam current	[mA]	1270	137	26.7	4.86	
Colliding bunches / beam		11200	1780	440	56	
Colliding bunch population	$[10^{11}]$	2.14	1.45	1.15	1.64	
Hor. emittance at collision ε_x	[nm]	0.71	2.17	0.71	1.59	
Ver. emittance at collision ε_y	[pm]	1.9	2.2	1.4	1.6	
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]	0.80	1.25	0.85	1.1	
Arc cell	[Accord]	Long	A DECEMBER OF	90	/90	
Momentum compaction α_p [10 ⁻⁶]			3.6	7.4		
Arc sext families	7	5	146			
$\beta_{x/y}^*$	[mm]	110 / 0.7	220 / 1	240 / 1	800 / 1.5	
Transverse tunes $Q_{x/y}$		218.158 / 222.200	218.186 / 222.220	398.192 / 398.358	398.148 / 398.216	
Chromaticities $Q'_{x/y}$		0/+5	0/+2	0 / 0	0/0	
Energy spread (SR/BS) σ_{δ}	[%]	0.039 / 0.109	0.070 / 0.109	0.104 / 0.143	0.159 / 0.201	
Bunch length (SR/BS) σ_z	[mm]	5.60 / 15.5	3.47 / 5.41	3.40 / 4.70	1.85 / 2.33	
RF voltage 400/800 MHz	[GV]	0.079 / 0	1.00 / 0	2.08 / 0	2.1 / 9.55	
Harm. number for 400 MHz				200	1	
RF frequency (400 MHz)	MHz		400.7	86684		
Synchrotron tune Q_s		0.0289	0.081	0,032	0.089	
Long. damping time	[turns]	1168	219	64	18.5	
RF acceptance	[%]	1.05	1.15	1.8	3.05	
Energy acceptance (DA)	[%]	± 1.0	± 1.0	± 1.6	-2.8/+2.5	
Beam crossing angle at IP $\pm \theta_x$	[mrad]		±	15		
Piwinski angle $(\theta_x \sigma_{z,BS})/\sigma_x^*$		26.4	3.7	5.4	0.99	
Crab waist ratio	[%]	70	55	50	40	
Beam-beam ξ_x/ξ_y^a		0.0022 / 0.097	0.013 / 0.128	0.010 / 0.088	0.066 / 0.144	
Lifetime $(q + BS + lattice)$	[sec]	10000	4000	6000	2500	
Lifetime $(lum)^b$	[sec]	1330	970	840	650	
Luminosity / IP	$[10^{34}/cm^2s]$	141	20	5.0	1.38	
Luminosity / IP (CDR, 2 IP)	$[10^{34}/cm^2s]$	230	28	8.5	1.8	

- Small modifications have been made @Z/tī, according to the changes described above.
- Not yet looked at W^{\pm} , Zh.
- Still not far from the official ones (below) for the mid-term review.

Running mode	Z	W	ZH	tī
Number of IPs	4	4	4	4
Beam energy (GeV)	45.6	80	120	182.5
Bunches/beam	11200	1780	440	60
Beam current [mA]	1270	137	26.7	4.9
Luminosity/IP $[10^{34} \text{ cm}^{-2} \text{ s}^{-1}]$	141	20	5.0	1.25
Energy loss / turn [GeV]	0.0394	0.374	1.89	10.42
Synchrotron Radiation Power [MW]		1	00	
RF Voltage 400/800 MHz [GV]	0.08/0	1.0/0	2.1/0	2.1/9.4
Rms bunch length (SR) [mm]	5.60	3.47	3.40	1.81
Rms bunch length (+BS) [mm]	15.5	5.41	4.70	2.17
Rms horizontal emittance ε_x [nm]	0.71	2.17	0.71	1.59
Rms vertical emittance ε_y [pm]	1.9	2.2	1.4	1.6
Longitudinal damping time [turns]	1158	215	64	18
Horizontal IP beta β_x^* [mm]	110	200	240	1000
Vertical IP beta β_{μ}^{*} [mm]	0.7	1.0	1.0	1.6
Beam lifetime (q+BS+lattice) [min.]	50	42	100	100
Beam lifetime (lum.) [min.]	22	16	14	12
Int. annual luminosity / IP [ab ⁻¹ /yr]	17†	2.4^{\dagger}	0.6	0.15‡

[†] The integrated luminosity in the first two years is assumed to be half this value to account for the machine commissioning and beam tuning;

 ‡ The integrated luminosity in the first year. at a lower beam energy of about 173 GeV is assumed to be about 65% this value to account for the machine commissioning and beam tuning. The smaller time for commissioning compared with the lower energy running reflects the LEP/LEP-2 experience.

F. Zimmermann

July 21, 2023, K. Oide

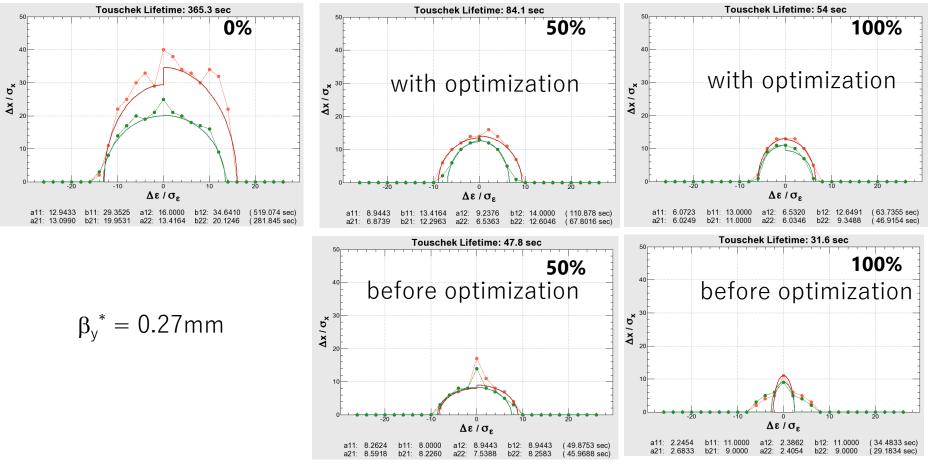
^aincl. hourglass.

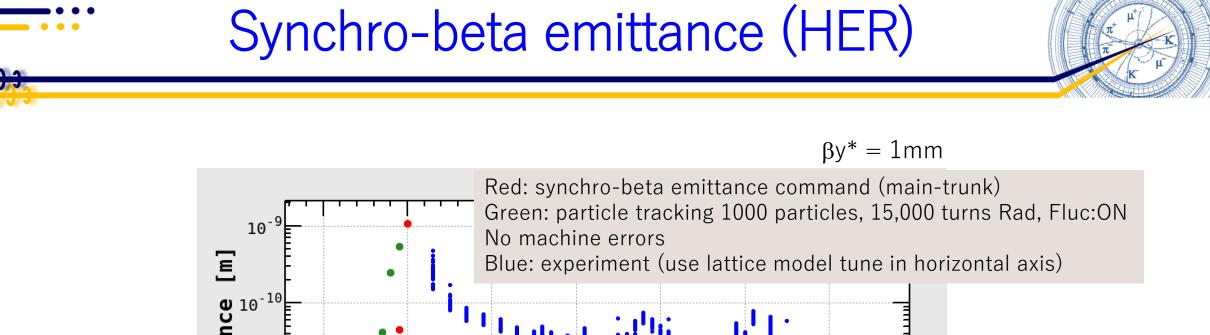
 $^b {\rm only}$ the energy acceptance is taken into account for the cross section

Table 4.1.1: CEPC baseline parameters in TDR

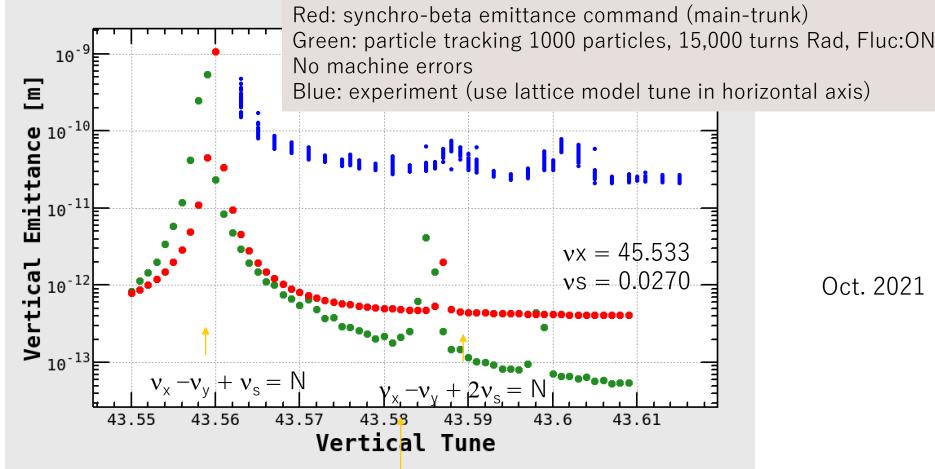
	Higgs	Z	W	tī		
Number of IPs		2				
Circumference (km)	100.0					
SR power per beam (MW)	30					
Half crossing angle at IP (mrad)		16	.5			

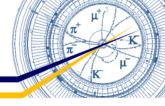
Bending radius (km)		10.7						
Energy (GeV)	120	45.5	80	180				
Energy loss per turn (GeV)	1.8	0.037	0.357	9.1				
Damping time $\tau_x/\tau_y/\tau_z$ (ms)	44.6/44.6/22.3	816/816/408	150/150/75	13.2/13.2/6.6				
Piwinski angle	4.88	24.23	5.98	1.23				
Bunch number	268	11934	1297	35				
Bunch spacing (ns)	591 (53% gap)	23 (18% gap)	257	4524 (53% gap)				
Bunch population (10 ¹¹)	1.3	1.4	1.35	2.0				
Beam current (mA)	16.7	803.5	84.1	3.3				
Phase advance of arc FODO (°)	90	60	60	90				
Momentum compaction (10 ⁻⁵)	0.71	1.43	1.43	0.71				
Beta functions at IP β_x^* / β_y^* (m/mm)	0.3/1	0.13/0.9	0.21/1	1.04/2.7				
Emittance $\varepsilon_x/\varepsilon_y$ (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7				
Betatron tune v_x/v_y	445/445	317/317	317/317	445/445				
Beam size at IP σ_x/σ_y (um/nm)	14/36	6/35	13/42	39/113				
Bunch length (natural/total) (mm)	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9				
Energy spread (natural/total) (%)	0.10/0.17	0.04/0.13	0.07/0.14	0.15/0.20				
Energy acceptance (DA/RF) (%)	1.6/2.2	1.0/1.7	1.05/2.5	2.0/2.6				
Beam-beam parameters ξ_x / ξ_y	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1				
RF voltage (GV)	2.2	0.12	0.7	10				
RF frequency (MHz)		65	50					
Longitudinal tune ν_s	0.049	0.035	0.062	0.078				
Beam lifetime (Bhabha/beamstrahlung) (min)	40/40	90/2800	60/195	81/23				
Beam lifetime requirement (min)	18	77	22	18				
Hourglass Factor	0.9	0.97	0.9	0.89				
Luminosity per IP $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$	5.0	115	16	0.5				



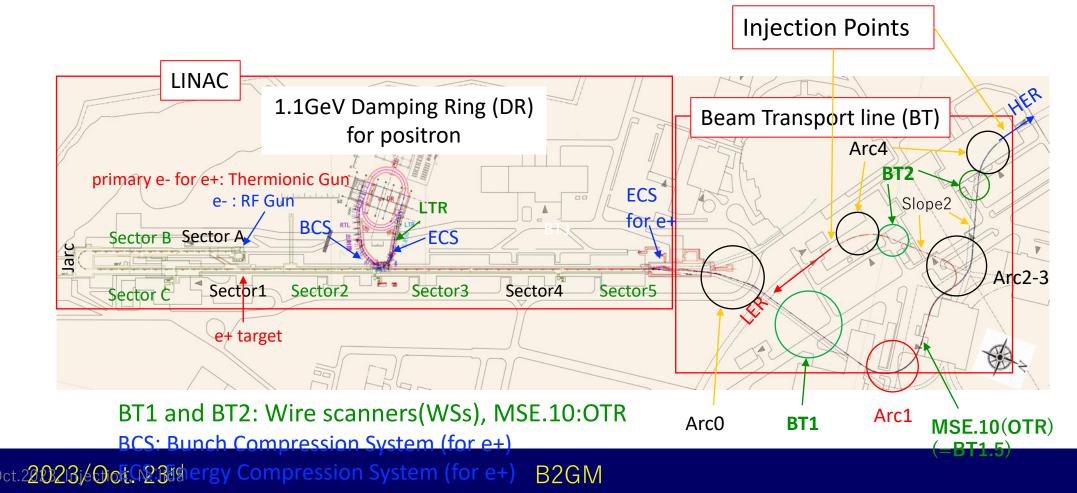


At the design stage, crab waist scheme was thought to be unusable due to dynamic aperture decrese.



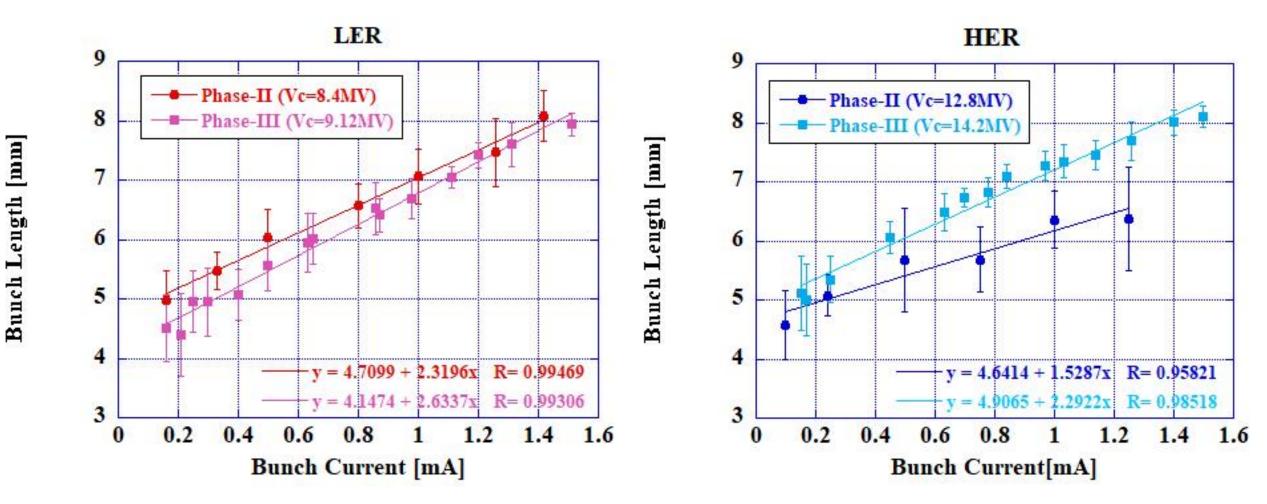

B2GM

Layout of LINAC, BT, Injection to MR



e+ beam is injected into the LER via DR:

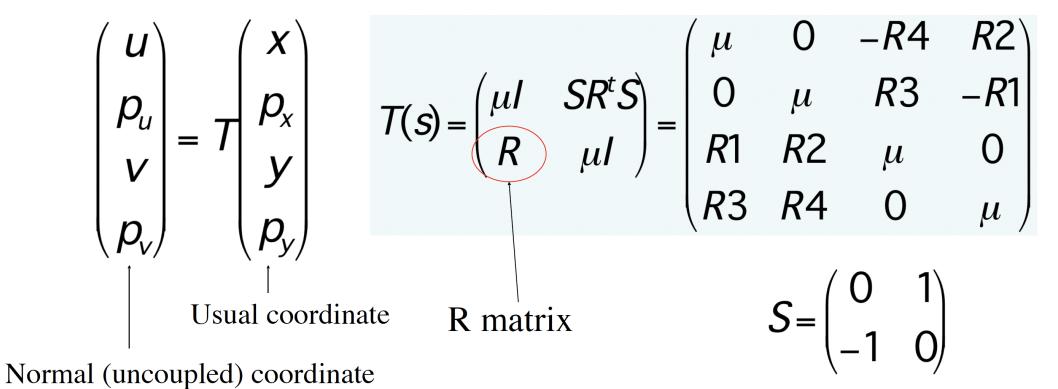
The injection BG is not almost affected by the beam condition at upstream of the DR.


e- beam directly injects into HER:

The injeciton BG is directly affected by the condition of RF-gun, LINAC, and BT.

B2GM

2023/Oct. 23rd

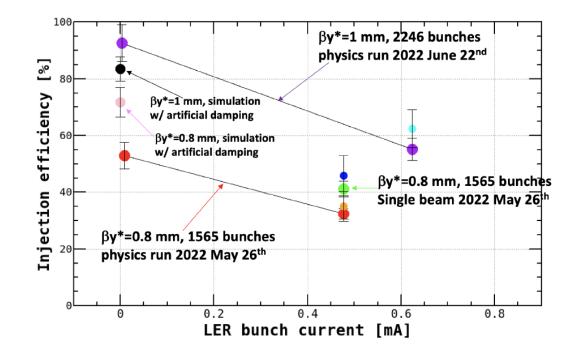


Definition of R matrix



$$T^{-1} = \left(\begin{array}{cc} \mu I & -SR^T S \\ -R & \mu I \end{array} \right)$$

1. Definition in the SAD code



- Introduction of crab waist at SuperKEKB
 - Motivations
 - The beam-beam performance was poor in spite of all of knob tunings for improving it.
 - Method
 - FCC-ee type scheme: use of imbalance sextupoles in the vertical local chromaticity correction section.
 - Time table
 - 2020 March 16th : LER crab waist (40%)
 - 2020 March 24th : LER crab waist (60%)
 - 2020 April 24th : HER crab waist (40%)
 - 2030 June 1st : LER crab waist (80%)

Injection efficiency (simulation and experiments)

Figure 5. Injection efficiency as a function of the bunch current in LER. Both cases of β_y^* at 0.8 mm and 1 mm are shown. There is strong beam current dependence. Here, we plot the dependence as the bunch current dependence. The data in cyan, blue, and orange are obtained by the simulations. The data in back and pink are obtained by the simulation with artificial extra damping to the oscillation of the center-of-gravity of the injecting bunch with a damping time of 100 turns which is intended to simulate the effect of the bunch-by-bunch feedback system.

Beam Lifetime

Time	lbeam[mA]	lbunch [mA]	nb	Tau [min]	emity [pm]	emitx [nm]	sig_z [mm]
2021/12/20/8:56	227.3	0.5784	393	8.35	22.3	3.1	5.67
2021/12/20/10:01	225.1	0.1643	1370	21.8	21.1	2.9	4.58

• Lifetime model

$\tau_{Touschek}$	$C_T = C_T$ (physical aperture, dynamic aperture)
$= C_T \frac{\sigma}{I_{beam}} \sqrt{\varepsilon_x \varepsilon_y} \sigma_z$	$C_V = C_V (dP/dI, physical aperture, dynamic aperture)$
$\tau_{Vacuum} = C_V \frac{1}{I_{beam}}$	$\frac{\tau_{Touschek}}{\tau_{Vacuum}} \propto n_b$
$\frac{1}{1} = \frac{1}{1} + \frac{1}{1}$	$C_T = 1.973 * 10^{11} [\text{sec A} / \text{m}^3]$
$ au_{Total}$ $ au_{Touschek}$ $ au_{Vacuum}$	$C_V = 7622 [\text{sec A}]$
 Result of analysis 	

Time	lbeam [mA]	nb	Tau [min]	sig_z [mm]	Touschek [min.]	Vacuum [min.]	sig_z [mm]	Touschek [min.]	Vacuum [min.]
2021/12/20/ 8:56	227.3	393	8.35	5.67	8.48	558.9	4.58	9.46	70.9
2021/12/20/ 10:01	225.1	1370	21.8	4.58	22.7	564.3	4.58	31.3	71.6