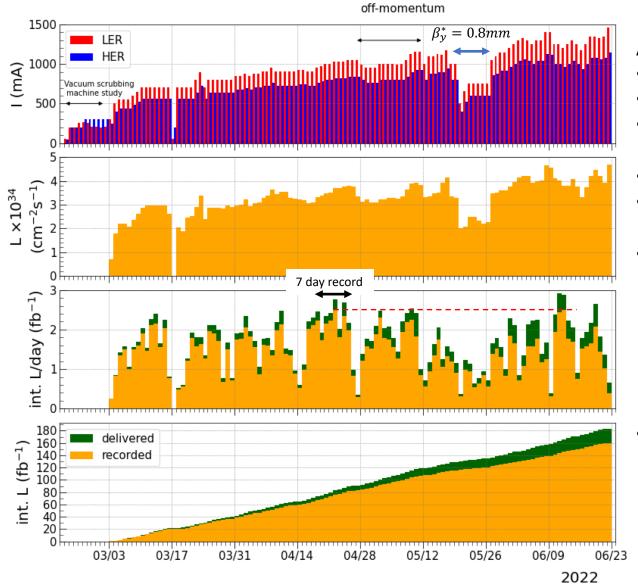
# SuperKEKB Status and plan


## **Contents**

- MR
  - Achievements
  - Challenges
  - Other issues
- LINAC Summary
- LS1
- Summary

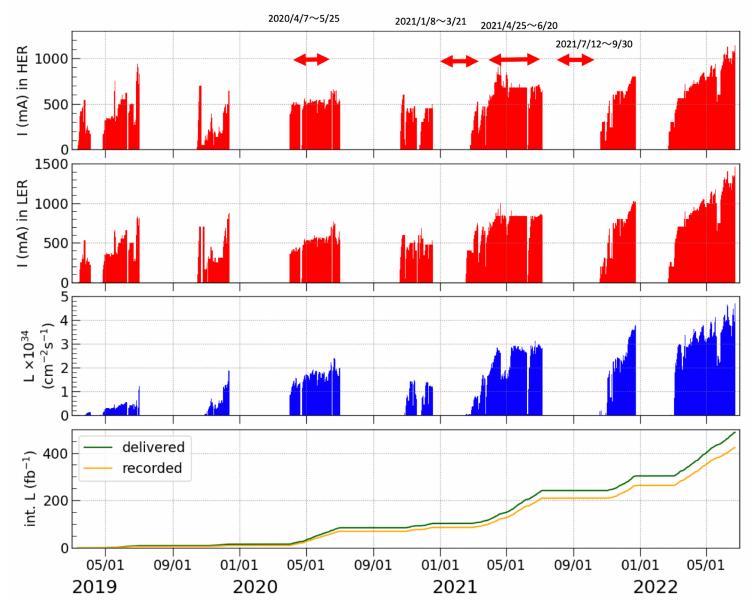
Makoto Tobiyama, Mika Masuzawa Accelerator Laboratory

- MR
  - Achievements
  - Challenges
  - Other issues
- LINAC Summary
- LS1
- Summary

#### 2022ab Run



#### **Achievements**


- 1460mA in LER, 1143mA in HER
- # of bunches was increased to 2346 (2 bucket spacing)
- Peak luminosity  $4.65 \times 10^{34}$  cm<sup>2</sup>s<sup>-1</sup>,  $4.71 \times 10^{34}$  cm<sup>2</sup>s<sup>-1</sup> (Belle HV off)
- Stable operation at higher beam currents
- 1.3A or more in LER seemed less stable but we managed to run the machine at 1.4 A at the end.
- Confirmed specific luminosity increase when  $\beta_{\nu}^* = 0.8 \ mm$

| Integrated luminosity      | Recorded | Date                      | Delivered | Date                      |
|----------------------------|----------|---------------------------|-----------|---------------------------|
| Shift (pb <sup>-1</sup> )  | 958.1    | April 24, swing, 2022     | 1035.9    | April 22, swing, 2022     |
| 1 days (fb <sup>-1</sup> ) | 2.503    | April 22, 2022            | 2.912     | June 11, 2022             |
| 7 days (fb <sup>-1</sup> ) | 15.001   | April 18 - April 24, 2022 | 16.599    | April 18 - April 24, 2022 |

Integrated luminosity ~160 fb<sup>-1</sup>

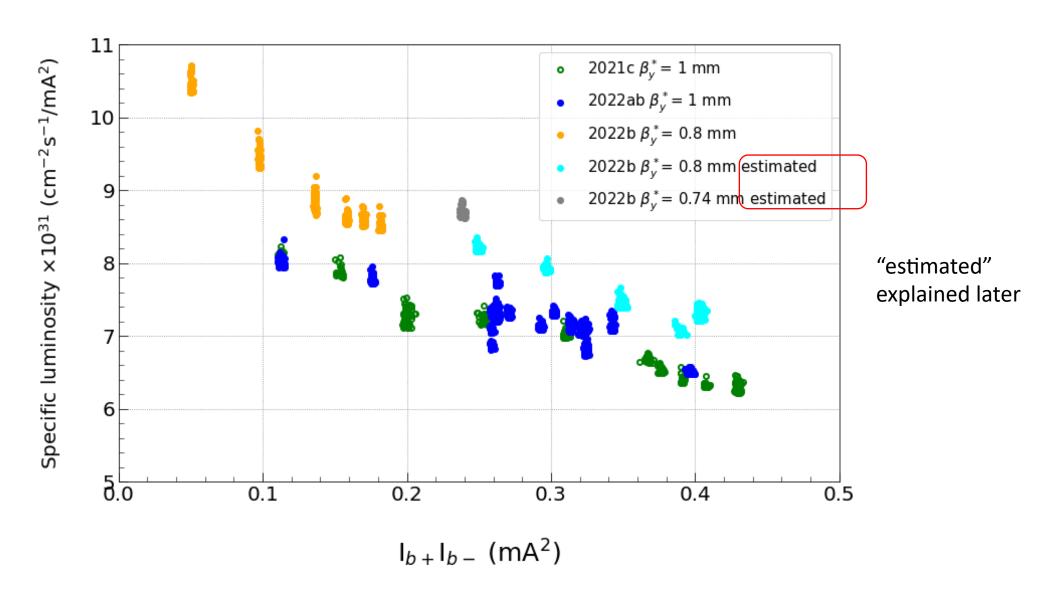
BPAC June 27, 2022

#### ⇔COVID-19 State emergency (Tokyo)



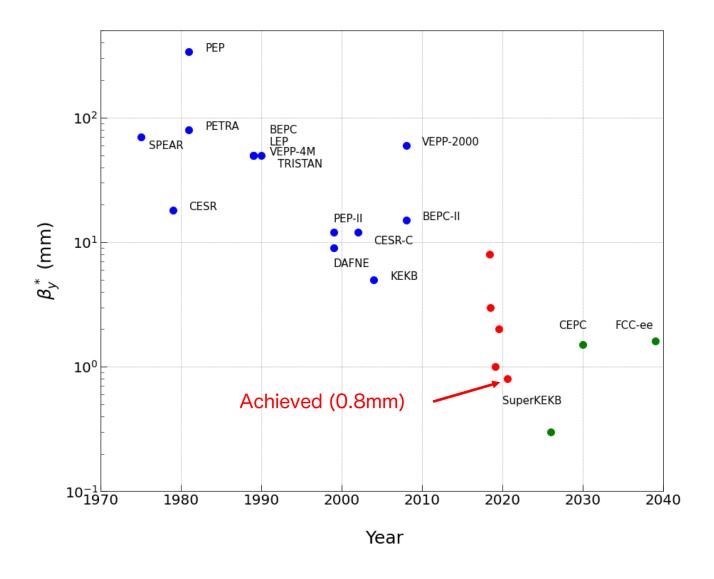
#### COVID-19

There were tough times


- No face-to-face meetings
- Minimum number of people in the control room required
- Travel restrictions

Now we are facing new problems

- rising electricity
- delay/stop in supply-chain


Integrated recorded luminosity  $\sim$  428 fb<sup>-1</sup> Corresponds to  $\sim$  40% of BELLE data

## Specific luminosity



BPAC June 27, 2022

## Vertical beta function at the IP $eta_y^*$

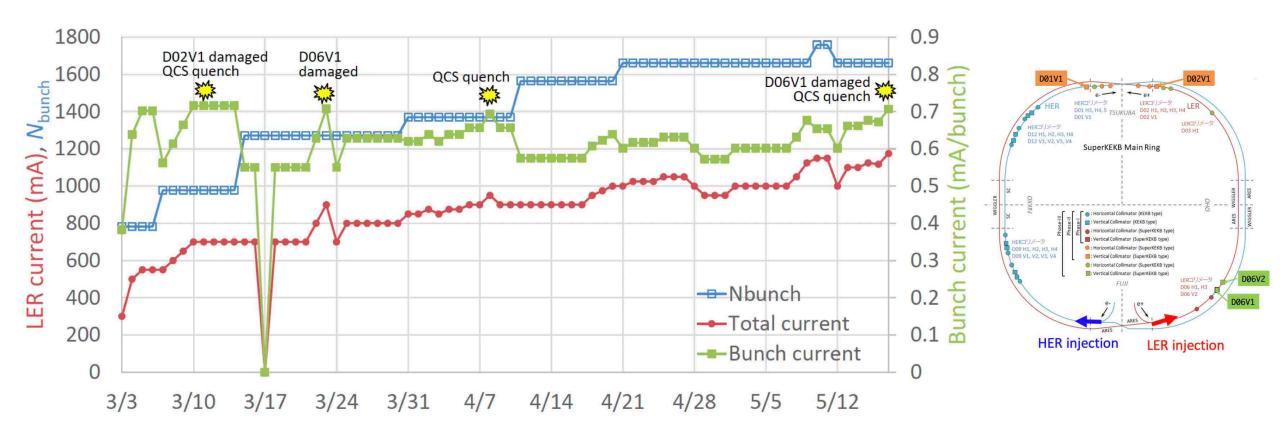


BPAC June 27, 2022

- MR
  - Achievements
  - Challenges
  - Other issues
- LINAC Summary
- LS1
- Summary

# Challenges: Fast and large beam losses

#### Observations

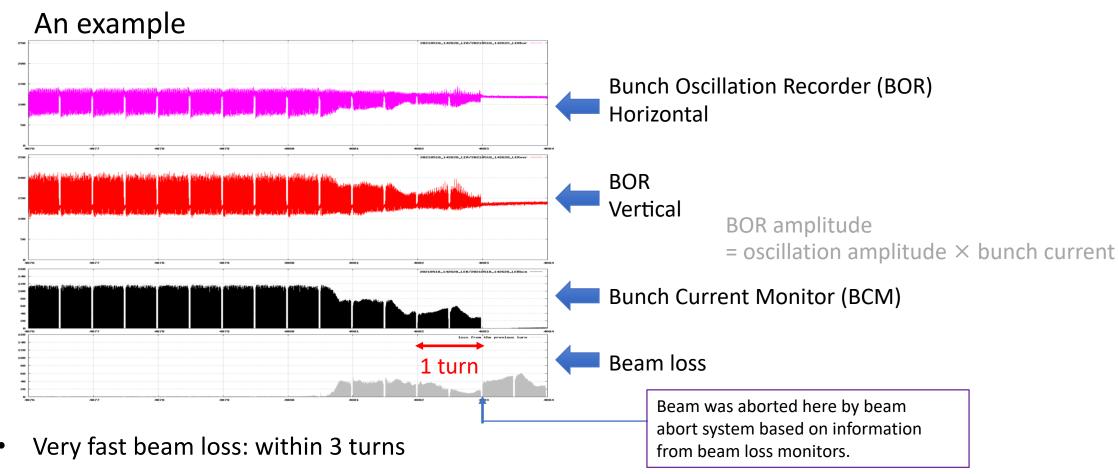

- Fast and large beam losses within 3 turns, particularly in LER are observed.
- These losses cause collimator damage and QCS quench.
- Empirical rule: Bunch current  $I_b^{\pm}$  must not exceed 0.7mA "Matsuoka rule".
  - We had to increase beam currents with  $I_b^{\pm}$  lower than 0.7mA.

### Mechanism

- Not really understood.
  - Some hypotheses, simulations → need to be verified.
  - A joint Belle2-SuperKEKB team has been organized (<a href="https://kds.kek.jp/event/41394/contributions/209334/attachments/154298/195935/16aA561-03.pdf">https://kds.kek.jp/event/41394/contributions/209334/attachments/154298/195935/16aA561-03.pdf</a>)
  - Within the framework of ITF (H. Ikeda and H. Nakayama) ?

Y. Funakoshi, IPAC'22

## Matsuoka rule, well categorized by Matsuoka-san




In the case of a small number of bunches ( $N_b$ = 793,  $I_t^+$  =61mA,  $I_t^-$  = 31mA) we could exceed this limit.

Large beam loss in LER happened even within the limit ( $I_b^+ \sim 0.62$ mA) when the total beam current  $I_t^+ \sim 1325$ mA.

BPAC June 27, 2022

## Challenges: Fast and large beam losses



- No bunch (dipole) oscillations were observed before beam loss.
  - In some cases, beam oscillation in the previous turn of beam loss was observed.
- No beam size blowup is observed before beam loss.

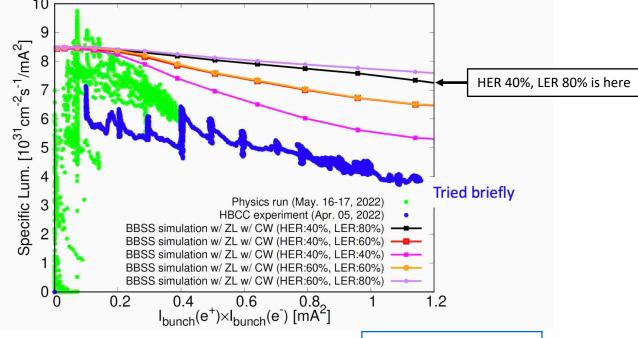
Y. Funakoshi, IPAC'22

# Challenges with Injection (more later)

- SuperKEKB injection scheme
  - Injector Linac provides e+ and e- beams. (e+: thermionic gun, DR, e-: RF gun)
  - Synchronization between injector and rings allows 1-bunch or 2-bunch injection per pulse.
  - Top-up injection is achieved for e+ and e- beams at 50Hz at maximum(sum of e- and e+).
- Beam current limitation
  - The maximum stored beam currents in the rings are determined by the balance between the charge sent from Linac and the charge loss due to beam lifetime.
    - Increasing linac charge is important.
  - The shorter beam lifetime at smaller  $\beta y^*$  (dynamic aperture) requires a more powerful injection. Conversely, injection sets a limit on the achievable  $\beta y^*$ .
    - Machine operation with the optics of  $\beta y^* = 0.8$ mm is being tried in this run.
  - The injection efficiency is also a very important issue.
    - Depends on  $\beta y^*$ , bunch currents, machine tuning, collimator setting...
    - Typical values of injection efficiency with  $\beta y^*=1$ mm: ~50%(LER), ~40%(HER)
    - Emittance preservation in Linac and Beam Transport line (BT) is important.

K. Furukawa, IPAC'22

# Challenges, beam-beam


Luminosity is much lower than simulations with BBSS (Beam-Beam Strong-Strong)

D. Zhou, IPAC'22

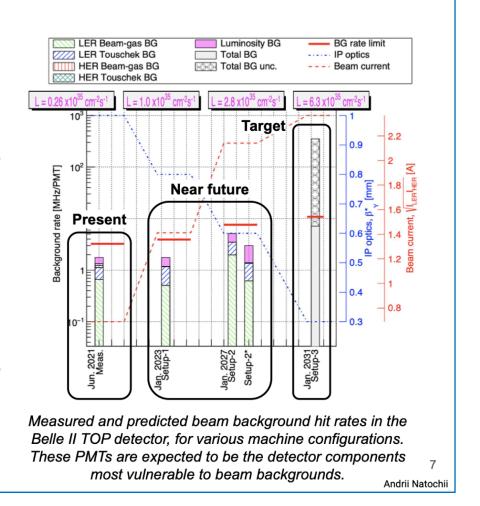
12

- Possible Cause
  - Machine imperfections:
    - Non-zero linear and chromatic coupling and dispersions at IP, can be corrected by skew sextupole field.
    - Optics degradation at higher beam current due to orbit changes at QCS\* and SLY\*, etc. ← Will explain later
  - Imperfect crab waist scheme; Interplay of beam-beam interaction and beam coupling impedance.
  - Beam oscillation excited by injection kickers at LER causes luminosity loss by ~10% (???)

| Operation parameter set for BBSS simulation |        |         |                                |  |  |  |  |  |  |
|---------------------------------------------|--------|---------|--------------------------------|--|--|--|--|--|--|
|                                             | 2022.0 | 4.05    | Comments                       |  |  |  |  |  |  |
|                                             | HER    | LER     |                                |  |  |  |  |  |  |
| I <sub>bunch</sub> (mA)                     | le     | 1.25*le |                                |  |  |  |  |  |  |
| # bunch                                     | 39     | 3       | Assumed value                  |  |  |  |  |  |  |
| ε <sub>x</sub> (nm)                         | 4.6    | 4.0     | w/ IBS                         |  |  |  |  |  |  |
| ε <sub>y</sub> (pm)                         | 35     | 30      | Estimated from XRM data        |  |  |  |  |  |  |
| β <sub>x</sub> (mm)                         | 60     | 80      | Calculated from lattice        |  |  |  |  |  |  |
| β <sub>y</sub> (mm)                         | 1      | 1       | Calculated from lattice        |  |  |  |  |  |  |
| σ <sub>z0</sub> (mm)                        | 5.05   | 4.60    | Natural bunch length (w/o MWI) |  |  |  |  |  |  |
| Vx                                          | 45.532 | 44.524  | Measured tune of pilot bunch   |  |  |  |  |  |  |
| Vy                                          | 43.572 | 46.589  | Measured tune of pilot bunch   |  |  |  |  |  |  |
| Vs                                          | 0.0272 | 0.0233  | Calculated from lattice        |  |  |  |  |  |  |
| Crab waist                                  | 40%    | 80%     | Lattice design                 |  |  |  |  |  |  |

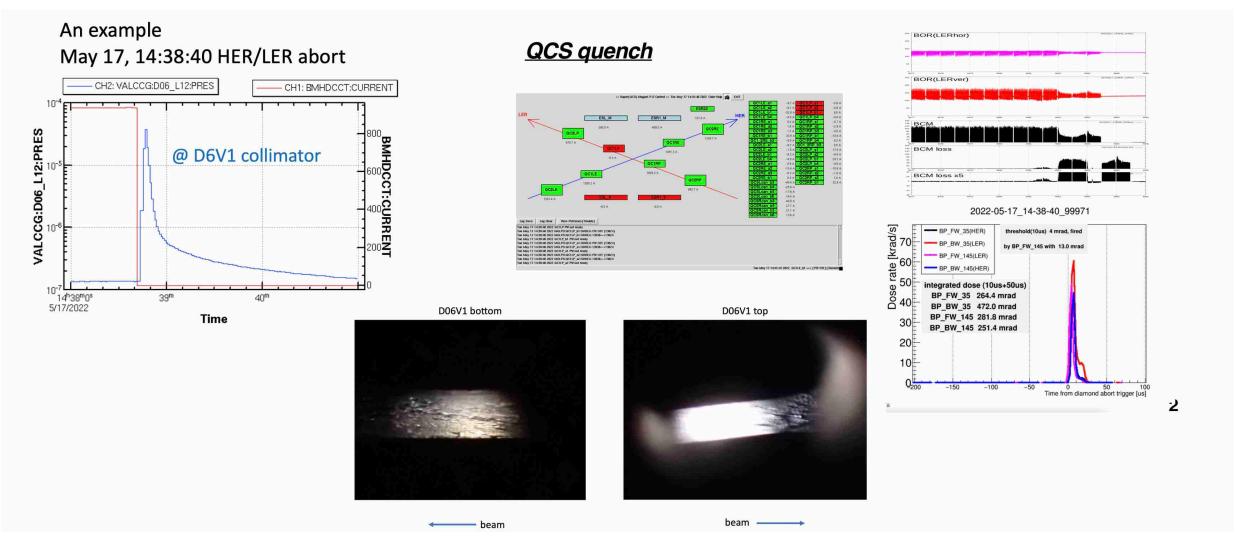


## Challenges, collimator issues

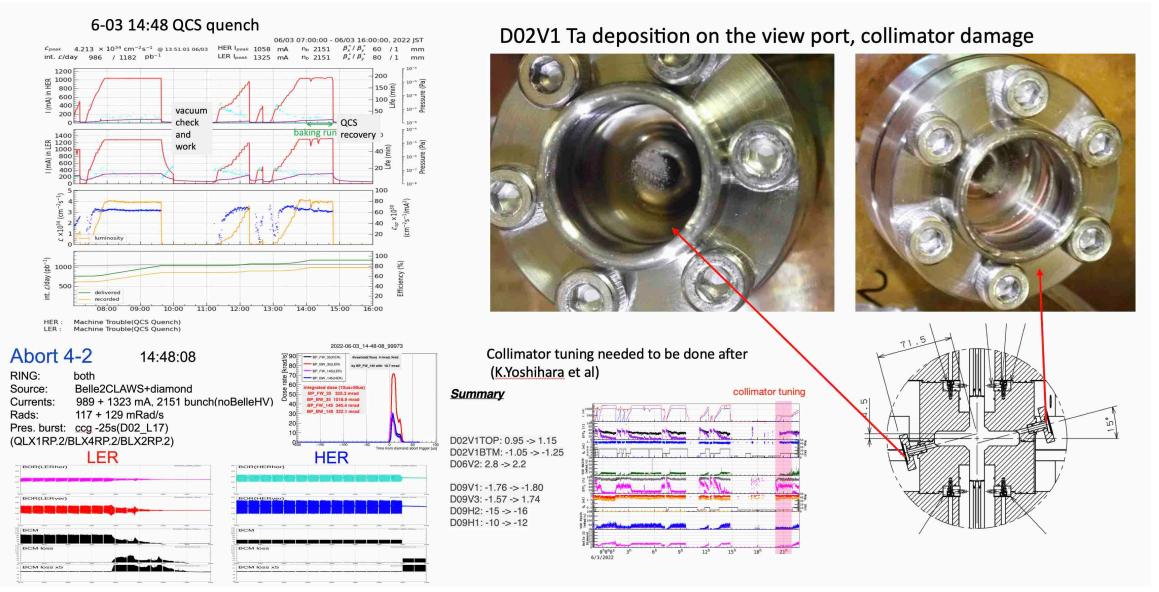

LER TMCI (Transverse Mode Coupling Instability)
The apertures of vertical collimators ↔TMCI

TMCI threshold will be lower than the design bunch current of 1.44mA when  $\beta_{\nu}^* \leq 0.6$ mm.

Non-linear collimator may help to increase the limit and to reduce the BELLE II BG.

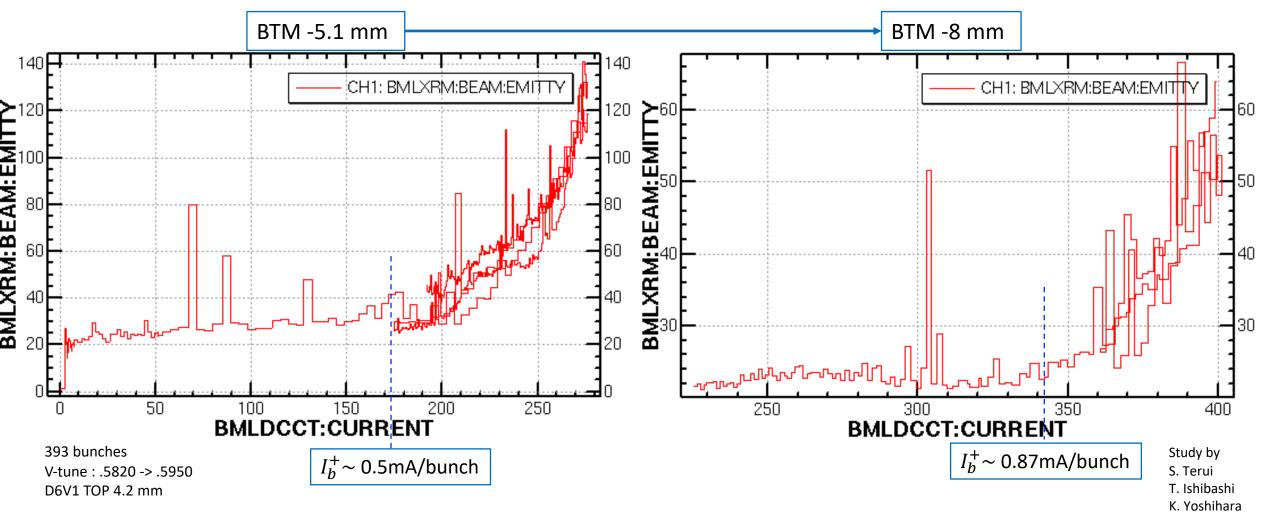

#### Background status and evolution

- Current background rates in Belle II are well below limits, see Figure
  - There is margin for injection backgrounds and unexpected problems
- Backgrounds will remain high but acceptable until a luminosity of at least 2.8 x10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup> is reached
- The total background at target luminosity is very uncertain due to
  - Future IR redesign (under discussion)
  - Unexpected IR beam pipe contribution to beam instabilities (under investigation)



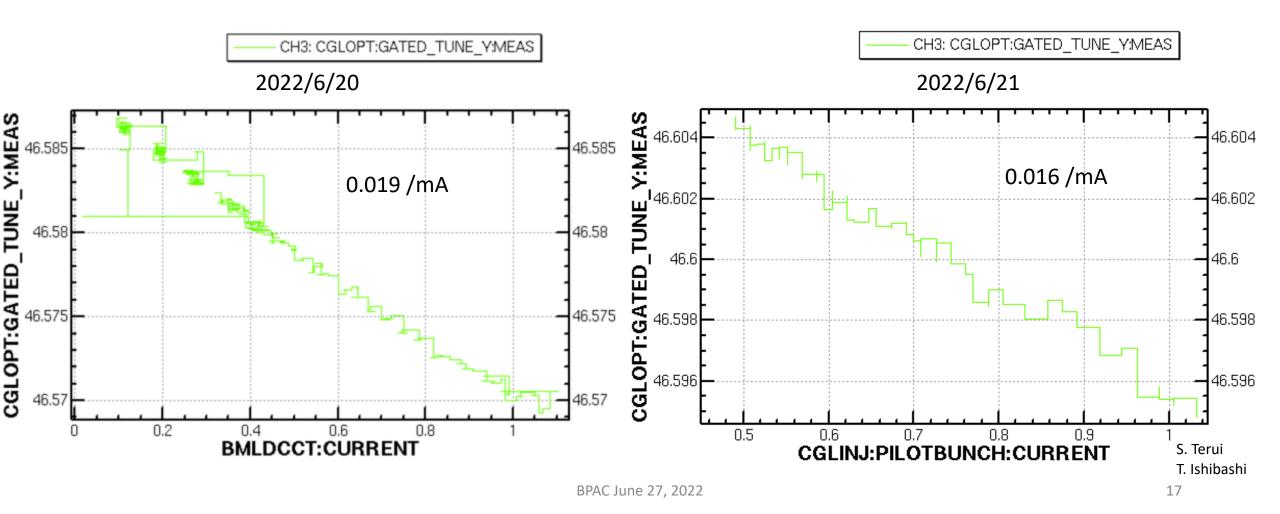

# Challenges, collimator damages

Collimator damage of D06V1, D02V1, and D09V1: Impedance increases?



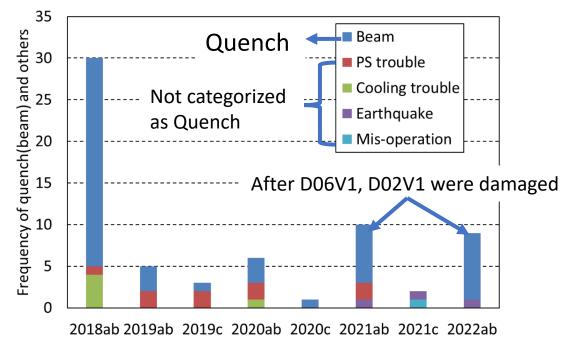

# Challenges, collimator damages

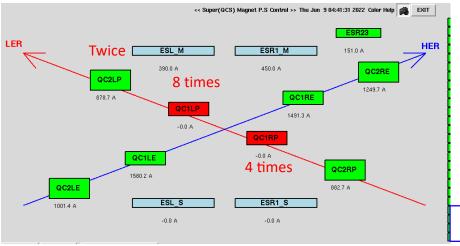



## LER vertical beam size blowup study, the effect of the damaged D06V1 collimator on June 21

When D06V1 collimator bottom was opened, the emittance threshold increased, Indication that the collimator damage resulted in an impedance increase...

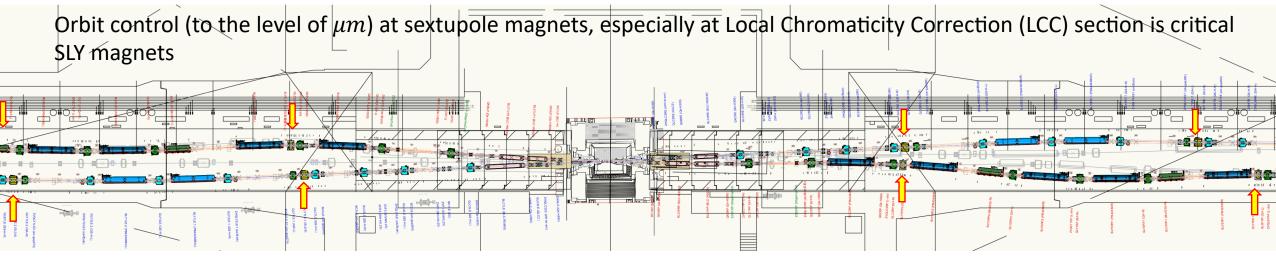


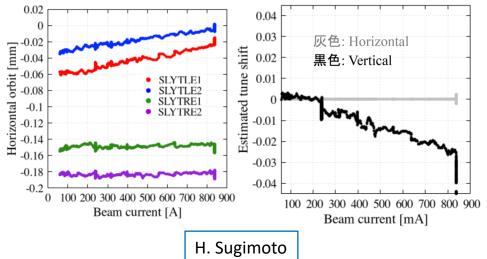

## LER vertical beam size blowup study, the effect of the damaged D06V1 collimator on June 21


When D06V1 collimator bottom was opened, tune shift became smaller, Indication that the collimator damage resulted in a larger tune shift.



# 2022ab QCS Quench Summary


| Date               | Where             | Cause of Abort            |
|--------------------|-------------------|---------------------------|
| 2022.3.11          | QC1LP (all coil)  | beam loss                 |
| 10:08              | QC2LP             | (CLAWS+Dia.)              |
| 2022.3.16<br>23:35 | Not known         | Earthquake                |
| 2022.4.8<br>11:55  | QC1LP (coil 2)    | beam loss<br>(CLAWS+Dia.) |
| 2022.5.17<br>14:38 | QC1LP (coil1,2,4) | beam loss<br>(CLAWS+Dia.) |
| 2022.6.1           | QC1RP (coil1,2)   | beam loss                 |
| 22:05              | QC1LP (coil1,2)   | (CLAWS+Dia.)              |
| 2022.6.3           | QC1LP(all coil)   | beam loss                 |
| 14:48              | QC2LP             | (CLAWS+Dia.)              |
| 2022.6.9           | QC1RP (coil1,2)   | beam loss                 |
| 00:37              | QC1LP (coil1,2)   | (CLAWS+Dia.)              |
| 2022.6.9           | QC1RP(coil1,2,3)  | beam loss                 |
| 04:26              | QC1LP(all coil)   | (CLAWS+Dia.)              |
| 2022.6.14          | QC1RP             | beam loss                 |
| 14:34              | QC1LP(coil1,2,4)  | (CLAWS+Dia.)              |

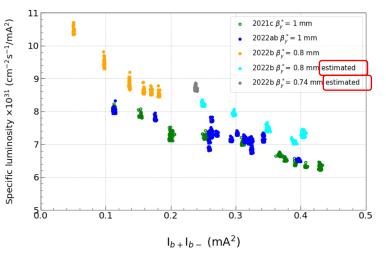




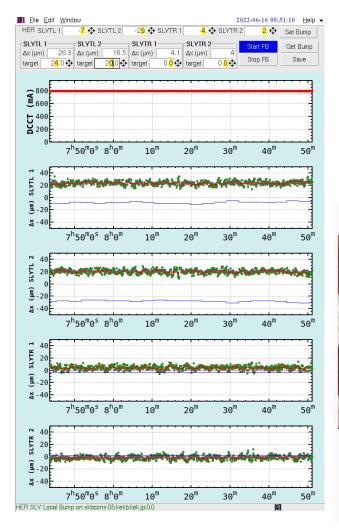

Wang Xudong

# Challenges, Optics degradation at higher beam currents



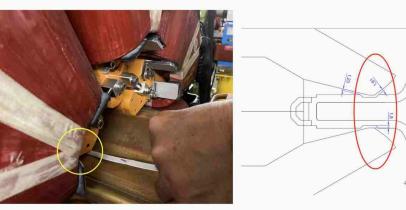


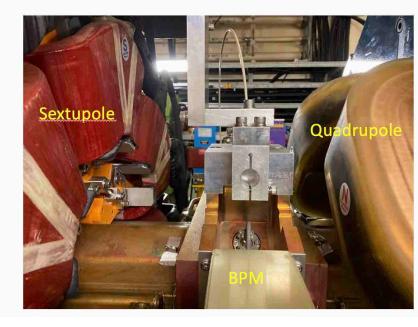

An orbital change of 40  $\mu m$  results in a vertical tune shift of about 0.025.


Tune Feed back keeps the tune at the target tune but the orbit at LCC sextupole mangnets is not controlled to the level of  $\mu m$ .

This results in a beta beat in the entire ring (optics degradation).

 $\beta_y^*$  was estimated to become smaller with these orbit change than when the optics were corrected at lower beam current (~50mA).



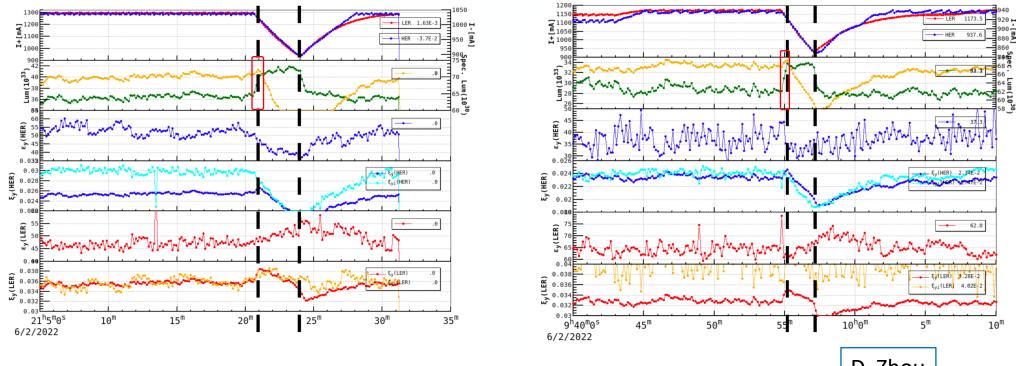


# Challenges, Optics degradation at higher beam currents



Orbit control feedback was introduced (Y. Ohnishi).

- But why orbit changes as a function of beam current?
- Duct move due to SR?
- Sextupole magnet moves with respect to the quad (BPM is attached to quad)
- What is moving wrt to what?
- Under investigation.






Changing the bump height (blue line) to keep the orbit constant

Beam oscillation excited by injection kickers at LER causes luminosity loss by ~10% (???)

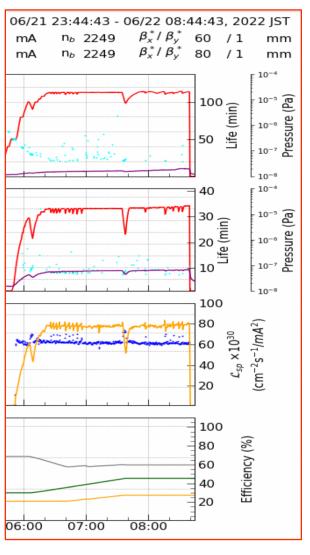
## Lsp-Injection correlation

- Careful analysis of KBlog data shows this phenomenon has always been there (since Phase-2)
  - Lsp degradation (by about 10%) due to injection has been clearly observed.
  - A sudden increase of Lsp causes a local peak luminosity. This is why we frequently saw the best luminosity just after injection.



Beam oscillation excited by injection kickers at LER causes luminosity loss by ~10% (???)

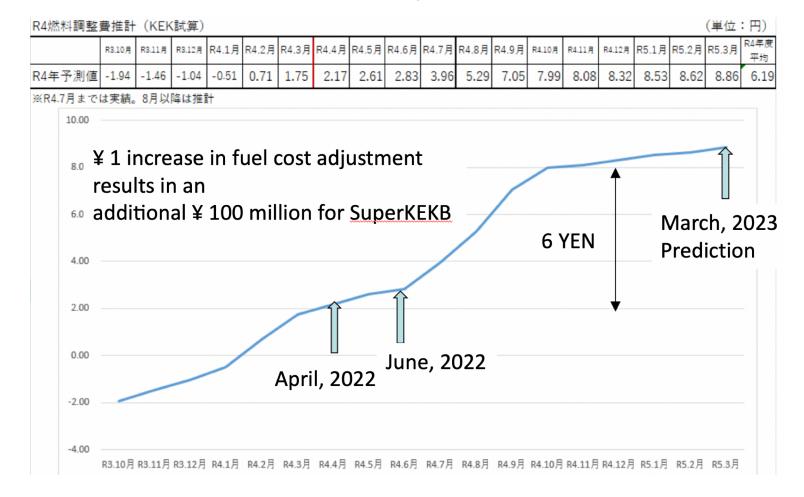
### Lsp-Injection correlation


#### Summary

- An increase/decrease of Lsp around the stop/start of LER injection was found.
- Lsp degradation correlated to injection is by the order of 10% at bunch product of  $\sim 0.3$  mA<sup>2</sup>.
- It is a geometric luminosity loss/gain from orbit offset, not from beam-size blowup.
- According to the KBlog data (tracked to 2020a run in this study), it has always been happening.
- It is not correlated to the non-optimum balance of beam currents  $I_+/I_-$  around the stop/start of LER injection.
- There is no clear evidence of correlation with iBump fast FB.
- It is not directly correlated with beam-beam interaction, because BB causes emittance growth and then reduces Lsp. If beam-beam plays a role on Lsp, it should be seen in changes of vertical beam sizes.
- It is confirmed by ZDLM and LumiBelle2 FFT analyses and (Thanks to S. Uehara).

#### Hyperthesis

Leakage kicks from kickers cause residual orbit oscillation of the stored beams. The horizontal oscillation is coupled
to the vertical by coupling. This coupling is amplified by IR (QCS magnets) and LCCs (SLY\* magnets). => Most
promising candidate.


Needs more investigation



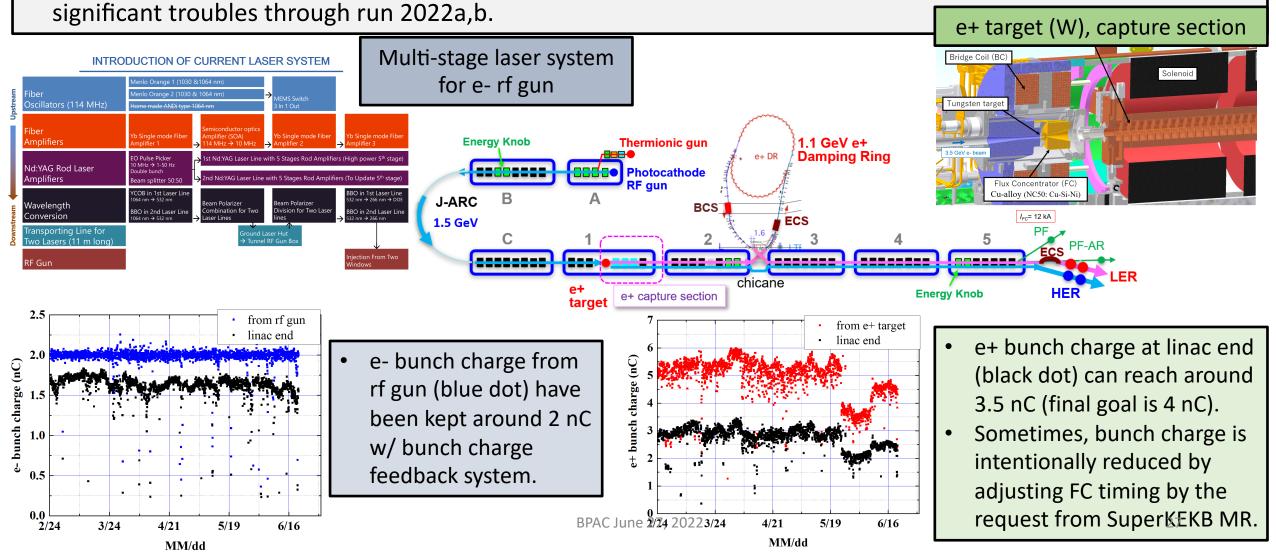
- MR
  - Achievements
  - Challenges
  - Other issues
- LINAC Summary
- LS1
- Summary

## Other issues

## **Electricity rates**

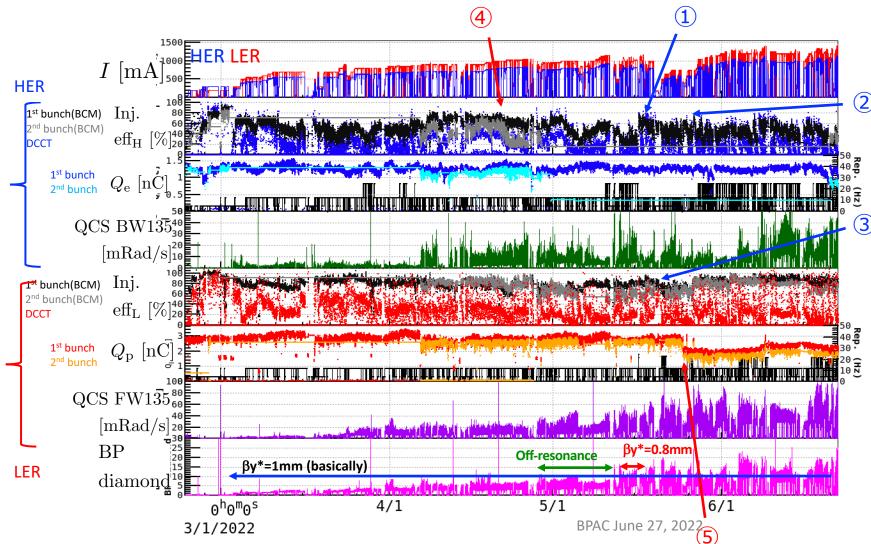


- MR
  - Achievements
  - Challenges
  - Other issues
- LINAC Summary
- LS1
- Summary


# Injector Linac Operation Status presentation material for BPAC 2022

By courtesy of M. Satoh and N. Iida, 2022.06.21

# Injector linac operation


• Simultaneous top-up injection to 4 rings w/ two e- sources (thermionic, rf guns), and 100 pulsed magnets have been successfully continued.

• Rf gun cavity, laser system, flux concentrator (FC), and other subsystems have been stably operated w/o any



# Injections in 2022ab

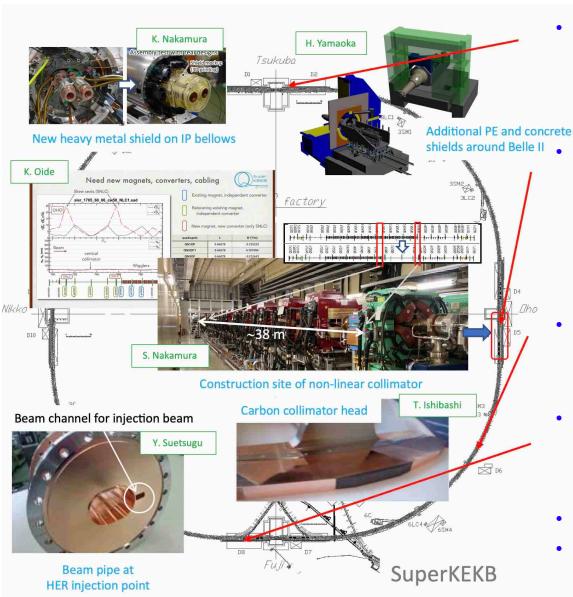
- e- beam needs a tuning every few days.
- e+ beam is rather stable thanks to the DR.



#### The injection efficiency depends on;

- the quality of injection beam
- injection parameters such as septum angle
- status of the stored beams and collimators in the SuperKEKB ring

#### **Improvements**


- The injection was improved by the currentdependent correction of the horizontal orbit at SLYTE \* in HER. Now the orbit feedback systems are working well.
- 2 The septa have been operating at 25Hz.
- 3 The fast strip line kicker has been used to correct the horizontal orbit for the 2<sup>nd</sup> bunch

#### To be improved

- 4 Since the injection efficiency of the 2<sup>nd</sup> e-bunch decreased due to the drift of the vertical orbit and the worse emittances of the 2<sup>nd</sup> bunch, the two-bunch injection was temporarily given up.
- e+ bunch charge has been reduced to avoid the CLAWS aborts. See the lower right figure in the previous page.

- MR
  - Achievements
  - Challenges
  - Other issues
- LINAC Summary
- LS1
- Summary

## LS1



- IR radiation shield modification
  - For BG reduction
    - · New heavy metal shields around IP bellows
    - Additional concrete & polyethylene shields around Belle II
    - Material change from W to SUS of QCS cryostat front plate

#### Non-linear collimator (LER)

- For impedance and BG reduction
  - New collimation scheme less likely to cause TMCI at smaller  $\beta_{v}^{*}$
  - Removal of 50 wiggler magnets, emittance, circumference
  - Installation of 2 skew sextupole and 5 quadrupole magnets
  - Installation of new vertical collimator with wider aperture
- Robust collimator head (LER)
  - As countermeasure against kicker-pulser misfiring and resulting destruction of collimator
    - Replacement with carbon head of horizontal collimator D06H3
- New beam pipes with wider aperture at HER injection point
  - For improvement of injection efficiency
    - · New beam pipes with wider aperture
    - New BPM for precise measurement of injected beam
- QCS leak test
- Others

Y. Funakoshi, IPAC'22

## LS1 schedule (~March, 2023)

|      |                 |       | 7   |      |       | 8   |      |       | 9   |      |       | 10 11 |      | 12    |     | 1    |       |     | 2    |       |     | 3    |       |     |      |       |     |      |
|------|-----------------|-------|-----|------|-------|-----|------|-------|-----|------|-------|-------|------|-------|-----|------|-------|-----|------|-------|-----|------|-------|-----|------|-------|-----|------|
|      |                 | Early | Mid | Late | Early | Mid | Late | Early | Mid | Late | Early | Mid   | Late | Early | Mid | Late | Early | Mid | Late | Early | Mid | Late | Early | Mid | Late | Early | Mid | Late |
| IR   | Shield removal  |       |     |      |       |     |      |       |     |      |       |       |      |       |     |      |       |     |      |       |     |      |       |     |      |       |     |      |
|      | BELLE II work   |       |     |      |       |     |      |       |     |      |       |       |      |       |     |      |       |     |      |       |     |      |       |     |      |       |     |      |
|      | QCS moving back |       |     |      |       |     |      |       |     |      |       |       |      |       |     |      |       |     |      |       |     |      |       |     |      |       |     |      |
|      | Magnet removal  |       |     |      |       |     |      |       |     |      |       |       |      |       |     |      |       |     |      |       |     |      |       |     |      |       |     |      |
|      | QCS leak test   |       |     |      |       |     |      |       |     |      |       |       |      |       |     |      |       |     |      |       |     |      |       |     |      |       |     |      |
|      | QCS cap replace |       |     |      |       |     |      |       |     |      |       |       |      |       |     |      |       |     |      |       |     |      |       |     |      |       |     |      |
|      | IR survey       |       |     |      |       |     |      |       |     |      |       |       |      |       |     |      |       |     |      |       |     |      |       |     |      |       |     |      |
|      |                 |       |     |      |       |     |      |       |     |      |       |       |      |       |     |      |       |     |      |       |     |      |       |     |      |       |     |      |
| оно  | Shield removal  |       |     |      |       |     |      |       |     |      |       |       |      |       |     |      |       |     |      |       |     |      |       |     |      |       |     |      |
|      | NonLC work      |       |     |      |       |     |      |       |     |      |       |       |      |       |     |      |       |     |      |       |     |      |       |     |      |       |     |      |
|      | ARES work       |       |     |      |       |     |      |       |     |      |       |       |      |       |     |      |       |     |      |       |     |      |       |     |      |       |     |      |
|      |                 |       |     |      |       |     |      |       |     |      |       |       |      |       |     |      |       |     |      |       |     |      |       |     |      |       |     |      |
| Fuji | ARES work       |       |     |      |       |     |      |       |     |      |       |       |      |       |     |      |       |     |      |       |     |      |       |     |      |       |     |      |

# International Task Force (ITF)

## Examples of activities

- Lattice translation and repository for SuperKEKB; Optics optimization and simulations with independent codes.
- Dynamic aperture optimization, new optics design.
- Beam-beam simulation, impedance calculation, instability theories.
- Deep discussions on the simulation results and new ideas.
- Proposed many machine study items and discussion on the results.

|                      |          | - International Lask Ford | e membe | re                |           |
|----------------------|----------|---------------------------|---------|-------------------|-----------|
|                      | <u> </u> | - International Task Fore |         |                   | 2021/7/27 |
| International member | S        | KEK ACCL members          |         | Belle II members  |           |
| Maria Enrica Biagini | INFN     | Mika Maszawa (Chair)      | SKEKB   | Hiroyuki Nakayama | Belle II  |
| Georg Hoffstaetter   | Cornell  | Yukiyoshi Ohnishi         | SKEKB   | Francesco Forti   | Belle II  |
| Evgeny Levichev      | BINP     | Akio Morita               | SKEKB   |                   |           |
| Mark Palmer          | BNL      | Hiroshi Sugimoto          | SKEKB   |                   |           |
| Yunhai Cai           | SLAC     | Renjun Yang               | SKEKB   |                   |           |
| Rogelio Tomas        | CERN     | Haruyo Koiso              | SKEKB   |                   |           |
| Pantaleo Raimondi    | ESRF     | Yoshihiro Funakoshi       | SKEKB   |                   |           |
| Katsunobu Oide       | CERNKEK  | Tsukasa Miyajima          | SKEKB   |                   |           |
|                      |          | Kazuhito Ohmi             | SKEKB   |                   |           |
|                      |          | Demin Zhou                | SKEKB   |                   |           |
|                      |          | Kentaro Harada            | KEK-PF  |                   |           |
|                      |          | •                         | •       | <del>-</del>      |           |

| ١ | BPO members       |       | _               |          |
|---|-------------------|-------|-----------------|----------|
| ı | Masanori Yamauchi | KEK   |                 |          |
| ı | Tadashi Koseki    | ACCL  | Naohito Saito   | IPNS     |
| ı | Makoto Tobiyama   | SKEKB | Shoji Uno       | Belle II |
| ı | Kazuro Furukawa   | SKEKB | Yutaka Ushiroda | Belle II |
| ı | Kyo Shibata       | SKEKB | Toru lijima     | Belle II |
|   | Yusuke Suetsugu   | SKEKB | Kodai Matsuoka  | Belle II |
|   |                   |       |                 |          |

4 working groups
Optics, Beam-beam, TMCI, LINAC
+New group "beam loss"
The next one will be held in mid/late July
Hybrid (zoom + face-to-face)

- MR
  - Achievements
  - Challenges
  - Other issues
- LINAC Summary
- LS1
- Summary

## Summary

#### We achieved

LER beam current: 1460 mA

HER beam current: 1143 mA

Number of bunches: 2346 bunches (2-bucket spacing, design) with a stable operation over 1 A in LER

Peak luminosity: 4.65 x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> / 4.707 x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> with Belle II HV OFF

#### Challenges

- Understanding various beam loss mechanism
- Collimator damages
- Optics degradation due to orbit change at higher beam current
- Injection: stability of e- beams, 2-bunch injection

#### LS1 started

Beam circulation in 2023 after various upgrade/modification work.