Introduction of Linac and RF Gun Drive

Laser System for SuperKEKB

The Meeting of Accelerator Laboratory 2021.10.19

Rui Zhang (ACCL 5, Injector Group)

CONTENTS

- General introduction of Linac injector for 4 rings
- Development of RF gun drive laser system for SuperKEKB
- Summary and outlook

General Layout of Linac Injector

Electron Source Part

RF Gun at Sector A1 of Linac

Electron Beams Merge Part

Thermionic DC e⁻ gun (GU_AT) 2 subharmonic bunchers (114 MHz, 571 MHz) and 2 bunchers

- e⁻ for e⁺ production (LER): 13 nC
- e⁻ study: 1 nC
- PF injection: 0.1 0.3 nC
- PF-AR injection: 0.1 0.3 nC

0° RF Gun

- Primary RF gun
- e⁻ for HER injection: 2 nC

90° RF Gun

- Spare RF gun
- Under testing

Positron Target and Capture Section

Positron Target and Capture Section

General Introduction of Linac Injector

Beam Injection Pattern Generation for 4-Ring Simultaneous Top-up Injection

- Selectable beam repetition rate according to the demand from each ring
- Adjustable priority for different case

Smooth 4-Ring Simultaneous Top-up Injection

M. Satoh, KEKB ARC, 2021.09

DEVELOPMENT of RF GUN DRIVE LASER SYSTEM

Neodymium-doped YAG (Nd:YAG) and Ytterbium-doped YAG (Yb:YAG) for 1 μm Laser

Nd:YAG Laser

- 4 energy level laser with high quantum defect (24%)
- Short fluorescent time (230 µs)
- Narrow bandwidth (0.67 nm)
- Wide laser pulse (~15 ps for A1 laser) $\tau_{FWHM} = 0.44/\Delta v$ (Bandwidth limit)
- Used in phase II and III

Yb:YAG Laser

- Quasi 3 energy level laser with low quantum defect (8.7%)
- Long fluorescent time (960 µs)
- Wide bandwidth (9.5 nm)
- Narrow laser pulse (~2 ps for A1 laser)
- Used in phase I
- Novel Yb:YAG rod laser system under construction

LONG-TERM OPERATION PLAN of LASER SYSTEM for RF GUN

Yb:YAG Disk Laser and Nd:YAG Rod Laser

Yb:YAG thin disk laser

VCSEL Module 1段目 Nd:YAG rod laser amplifier module Photo Diode LIIJ:GR A1_GND:NDYAG1_2nd VCSEL Module 2段目

- Good thermal management and modern laser design ٠
- Necessary multi-pass for amplification ٠
- Used in Phase I •
- Poor stability and complex adjustment
- Not suitable for accelerator long term operation •

- Mediocre thermal management ٠
- Single or double-pass for efficient amplification ٠
- Used in Phase II and III •
- Good stability ٠
- Simple adjustment and fast recovery during trouble case

Nd:YAG rod laser

Nd:YAG rod length:

80~95 mm

Yb-Fiber and Nd:YAG Hybrid Laser System

	Menlo Orange 1 (1030 &1064 nm)	
Fiber	Menlo Orange 2 (1030 & 1064 nm)	→ MEMS Switch
Oscillators (114 MHz)	Home made ANDi type 1064 nm	3 In 1 Out
Fiber Amplifiers (10 MHz)	Yb Single Mode Fiber Amplifier 1 → 114 MHz →	tor Optics DA) 10 MHz \rightarrow Xb Single Mode Fiber Amplifier 2 \rightarrow Amplifier 3
Nd:YAG Rod Laser Amplifiers (1-25 Hz)	EO Pulse Picker 10 MHz → 1-50 Hz Double bunch Beam splitter 50:50 → 2nd Nd:YAG	Laser Line with 5 Stages Rod Amplifiers (High power 5 th stage) Laser Line with 5 Stages Rod Amplifiers (Will update 5 th stage)
Wavelength Conversion	YCOB in 1st Laser Line $1064 \text{ nm} \rightarrow 532 \text{ nm}$ Beam Polariz Combination Laser Line Laser Lines	ter b for Two 1 for Two Beam Polarizer Division for Two Laser lines Division for Two Laser $32 \text{ nm} \rightarrow 266 \text{ nm} \rightarrow DOE$ BBO in 1st Laser Line $532 \text{ nm} \rightarrow 266 \text{ nm} \rightarrow DOE$ BBO in 2nd Laser Line $532 \text{ nm} \rightarrow 266 \text{ nm} \rightarrow DOE$
Transporting Line for Two Lasers (11 m long)		 ✓ T Ground Laser Hut → Tunnel RF Gun Box
RF Gun		Injection From Two Windows

Yb-Fiber and Nd:YAG Hybrid Laser System

全体の様子

Laser 2nd Line

Yb-Fiber and Nd:YAG Hybrid Laser System

Simple illustration for 2 lasers incidence

• Laser with vertical polarization, <a>Inser with horizontal polarization, HWP: half wave plate

DOE for Laser Spatial Distribution Reshaping

- DOE: Diffractive Optical Element for high quality e⁻ beam
- Principle: Diffraction optics by lens and micro-configuration
- Desired intensity distribution can be realized (phase coding)
- World's first application of DOE in UV laser part

DOE for Laser Spatial Distribution Reshaping

- Application DOE in 1st laser line from 2020c and in 2nd laser line from 2021c
- Elliptical flat-top spatial distribution on the surface of photocathode (LA6mm SA3mm) for low emittance e⁻ generation and avoiding RF gun discharge

R. Zhang, LCG Meeting, 2020.07

20-27

Laser Pointing Stability Fluctuation in A1 Laser Ground Laser Hut

- Daily temperature drift in A1 ground laser hut due to Klystron gallery and outside environment
- Long laser transporting line from ground to tunnel
- Laser pointing stability affects stability of electron beam from RF gun

Beam Position Monitor and Feedback System

Beam Position Monitor and Feedback System

Laser position feedback system

Laser pointing stability at virtual photocathode

R. Zhang, Linac Technology Meeting, 2020.10.06

Photocathode for RF Gun

Quantum Efficiency of Photocathode

- QE Ranking: KEK $Ir_7Ce_2 >$ KOBELCO $Ir_2Ce >$ KOBELCO $Ir_7Ce_2 >$ KEK Ir_2Ce
- Discharge Probability
 KEK Ir₇Ce₂ <
 KOBELCO Ir₂Ce
- Adoption of KEK Ir₇Ce₂ from 2021ab
- Achievable bigger size

Laser Status Monitoring Information Page

https://www-linac.kek.jp/ope/opelog2/opelog.html

2 nC Low Emittance Electron Beam Generation

Two lasers incidence at 2021c (2021.10.11)

• 2 nC after RF gun for HER beam (by partial energy of two lasers)

Single laser incidence at 2021c (2021.10.18)

- 1st laser energy: 250 uJ \rightarrow Peak charge: 1.4 nC
- 2nd laser energy: 250 uJ → Peak charge: 1.5 nC

Wire scanner @ B-sector (2021.10.11)

- With DOE and position feedback system
- Two lasers incidence
- 2 nC from RF gun
- $\gamma \varepsilon_x = 8.574 \pm 1.131 \, mm \cdot mrad$
- $\gamma \varepsilon_y = 8.890 \pm 1.215 \ mm \cdot mrad$
- The best record so far

SUMMARY & OUTLOOK

- Summary
 - Linac injector operates well for successful 4-ring simultaneous top-up injection
 - Stable operation of Yb-fiber/Nd:YAG laser provides continuous SuperKEKB HER injection
- Outlook
 - Current Yb-fiber/Nd:YAG laser will be upgraded during 2021 winter maintenance for higher energy
 - Novel Yb-fiber/Yb:YAG laser system is under construction (as one part of Linac Upgrade Project)

THANKS