Development of the fast BPM data acquisition system using Windows oscilloscope-based EPICS IOC

Masanroi Satoh^{1, A)}, Hu Yong^{B)}, Takuya Kudou^{C)}, Shiro Kusano^{C)}, Tsuyoshi Suwada^{A)} and Kazuro Furukawa^{A)}

^{A)} Accelerator Laboratory, High Energy Accelerator Research Organization (KEK),

1-1 Oho, Tsukuba, Ibaraki, 305-0801

^{B)} Brookhaven National Laboratory

Upton, New York 11973, USA

^{C)} Mitsubishi Electric System & Service Co., Ltd

2-8-8 Umezono, Tsukuba, Ibaraki, 305-0045

Abstract

The KEK Linac is a 600-m-long injector, which provides the beams for the four independent rings (KEKB e-/e+, PF and PF-AR). The non-destructive beam position monitor (BPM) is indispensable diagnostic tool for the long-term stable beam operation. In the KEK Linac, approximately one hundred BPMs with the four strip-line type electrodes are utilized for the beam orbit measurement. The orbit data is used for the orbit and energy feedback loops. Towards the simultaneous top-up injection of KEKB and PF, the Linac has been upgraded for aiming the fast beammode switching operation. We developed a new fast BPM DAQ system using a Windows-based digital oscilloscope since the 50 Hz beam position measurement is strongly required for the fast beam-mode switching operation. In this paper, we will present the system description of the new BPM DAQ system and the result of its performance test in detail.

WindowsオシロスコープベースEPICS IOCを用いた高速BPMデータ収集シ ステムの開発

1.はじめに

KEKの電子陽電子入射器(以下、入射器)は、4 つのリング(KEKB電子/陽電子、PF及びPF-AR)へ、 異なる品質のビームを供給している。PF及びPF-AR リングには、通常1日2回の定時刻入射を行っている。 一方、KEKBリングへは連続入射を行っており、入 射器のビームモード(機器パラメータ)を数分毎に切 り替えて入射し、電子/陽電子リングの蓄積電流値 をほぼ一定に保っている。KEKBリングでは、更な るルミノシティー調整効率向上のため、ビームモー ド切り替え時間の短縮化が望まれている。一方、PF リングでは、近年主流となっているトップアップ運 転への要望が高まっている。このため、KEKB連続 入射及びPFトップアップ同時実現のための入射器 アップグレードが進められてきた^[1, 2]。本アップグ レードの目的は、20 ms間隔(50 Hz)毎に入射器のタ イミング信号、低電力RF位相などを制御し、パル ス毎に異なるリングへのビーム入射を実現する事で ある。今年度より、3リング同時トップアップ入射 が実現され、将来のKEKBアップグレードへ向けて、 PF-ARを含めた4リング同時入射も検討されている。

入射器では、安定なビーム運転を実現するために、約100台の非破壊型ビーム位置モニタ(以下、BPM)^[3] が設置されており、BPM情報を基にしたビーム軌道 及びエネルギー安定化フィードバックを行っている ^[4]。同時入射運転に於いては、パルス毎のビーム モードが異なるため、すべてのパルスについての ビーム位置計測が不可欠となる。従来のBPMデータ 収集(以下、DAQ)システムでは、最大DAQ速度が1 Hz程度と低速であり、また、10年以上前に導入され た機器であるため、維持管理が非常に困難であった。 これらの理由より、50 Hzビーム位置計測を目指し た新BPM DAQシステムの開発が行われた。本稿で は、新システムの構成及び性能評価について詳細に 報告する。

2.BPM DAQシステム

2.1 システム構成

入射器では、全長約600mに渡り約100台の4電極 ストリップライン型BPMが設置されている。BPM 電極から得られるアナログ信号は約3 ns幅のバイ ポーラ型であり、SMAコネクタ型真空フィードス ルーを介して約30 mの同軸ケーブルに接続され、地 上部のモニターステーションへ送られる。モニター ステーションでは、複数台のBPMからのケーブルが ケーブルコンバイナボックスへ接続され、適切な ケーブルディレイを通して信号が合成される。これ により、少ないチャンネル数で、複数のBPM信号を アナログデジタル変換することが可能となる。図1 に、BPM DAQシステムの構成図を示す。

旧BPM DAQシステムは、VME計算機(OS9; Force 68060/50 Hz)及び2チャンネルのデジタルオシロス

¹ E-mail: masanori.satoh@kek.jp

コープ(Tektronix TDS 680B/C; 8 bits; 5 GSa/s)から構成されていた。オシロスコープを用いて捕捉された 波形データは、GPIB接続されたVME計算機により 読み込まれ、各バイポーラ信号の振幅値を算出した 後、予め計測されているBPMマッピング情報及び ケーブル損失係数を適用し、ビームの水平・垂直位 置及び電荷量を算出する。これらの情報は、上位の サーバ計算機群(HP Tru64 UNIX/Linux)へ送られた後、 ビーム軌道・エネルギーフィードバックを始めとし た様々なソフトウェアに於いて利用される。旧シス テムでは、19台のDAQシステムを用いて、約100台 のBPM信号を処理していた。

新システムは、旧システムのVME計算機及びオ シロスコープを、4チャンネルの高速デジタルオシ $\Box \lambda \exists - \mathcal{J}$ (Tektronix DPO7104; 10 GSa/s, 8 bits, Windows XP (P4/3.4 GHz), Gigabit Ethernet)へ置き 換えた物である。旧システムでは、2チャンネル のオシロスコープが使用されていたため、コンバ イナボックスから出力される信号は、CH1へ垂直 方向、CH2へ水平方向の電極信号が入力されてい た。入射器BPMでは、KEKB陽電子生成用一次電 子ビームである10 nCから、PF及びPF-AR用0.1 nC 電子ビームまで、幅広い電荷量のビーム計測が必 要とされる。このため、従来のシステムでは、 ビームモード毎にオシロスコープの垂直レンジを 切り替えた計測を行っていた。しかしながら、こ の様な方式を用いた場合、50 Hzでのビーム計測 は不可能となるため、新システムにおいては、コ ンバイナボックスからの出力を二分し、大電荷

(10 nC)モード用の信号をCH3(垂直)/CH4(水平)へ 入力し、これ以外(1 nC/0.1 nC)のモード用として CH1(垂直)/CH2(水平)へ入力する。この方式を用 いることにより、すべてのチャンネルの垂直レン ジを変えることなく使用し、ビームモード毎に波 形捕捉のチャンネルを選択した高速データ処理を 行っている。

2.2 DAQソフトウェア

新システム用DAQソフトウェアは、旧システム (VME/OS9)用に開発されたものをWindows用に移植 し、EPICS^[5] IOCとして動作させている。本ソフト ウェアは、Microsoft Visual Studio 2005/C++、 TekVisa及びEPICS base R3.14.8.2を用いて開発され た。新システムのオシロスコープは、ファームウェ アがWindows OS上で動作しており、ユーザー開発 のアプリケーションを同機上で実行する事が可能で ある。このため、旧システムで必要とされたVME の様な追加の制御用計算機が不要であり、保守性の 向上が期待される。

同時入射運転のために、新タイミングシステムとして、イベント生成/受信システムが導入された^[6,7]。これは、VME64xバスを基本とし、一台のイベント 生成システムが複数台の受信システムと光ファイ バーを介してスター型接続され、タイミング、RF クロックなどの情報を高速通信で共有する物である。 イベントシステム用ソフトウェアも、EPICSを基本 として開発されており、ビームパルス毎のモード情 報は、EPICSレコード経由による設定及び読み出し が可能である。

新システムでは、50 Hz毎に更新されるビーム モードレコードを常時監視し、レコードの更新に続 く外部トリガ信号と同期した信号捕捉を行う。この 際、モードに対応したチャンネル及び演算処理係数 が使用され、位置データ等の計算結果は、各オシロ スコープ上で動作しているEPICSレコードへ書き込 まれる。これらのレコード情報は、軌道表示パネル 等の上位アプリケーションから直接読み出されてい る。

3.新システムの性能評価

3.1 波形補足速度

新システムを用いて、波形データ捕捉速度の評価 を行った。評価用ソフトウェアは、オシロスコープ のWindows上に於いてEPICS IOCとして動作させた。 本試験では、オシロスコープの同時使用チャンネル 数及び波形捕捉データ点数を独立に変化させた場合 の処理速度を測定した。また、オシロスコープの ディスプレイ更新機能をオフとし、外部トリガ信号 として15 MHzの矩形信号を用いた。

図2に、本測定の結果を示す。データ点数を1 k ポイントから500 kポイントまで変化させ、それぞ

れの場合について、使用チャンネル数を1チャンネ ルから4チャンネルまで増加させた。測定結果は、 連続100回行った測定値の平均をグラフ化したもの である。入射器のBPM DAOでは、同時に2チャンネ ル計測を行い、データ点数はモニターステーション に因って異なるが、最大20 kポイントである。図2 の結果より、これに対応するDAQ速度は150 Hz以上 であり、波形補足後の演算処理時間を考慮しても、 50 Hzでのビーム位置計測を行うためには十分な性 能である事が確認できる。

また、50 Hzトリガに於ける波形捕捉欠落を調 査したところ、三日に一度程度の頻度であり、長 期安定動作が期待できる。但し、この様な安定性 は、ネットワーク負荷及びオシロスコープのCPU 負荷などに依存するため、実運転上では注意が必 要となるであろう。

図2: EPICS IOCによる波形補足速度

3.2 50 Hzビーム試験

運転用ソフトウェアを用いて、KEKB電子/陽電子 及びPF用ビームを交互に20 ms間隔で出力してビー ム試験を行った。図3は、入射器アーク部の BPM(R0_42)に於ける2時間分の電荷量データをプ ロットした物である。電荷量のばらつきは、測定 BPM位置上流でのビームロスに起因すると思われる。 測定データ毎のタイムスタンプ間隔を調べたところ、

図3: EPICS IOCによるDAQ速度

ほぼ20 ms間隔となっており、50 Hzビームの安定し た位置測定が行われていることを確認した。また、 ビーム軌道・電荷量表示用ソフトウェアを開発した (図4)。これを用いて、モード毎のパネル表示及 び監視を行い、実用運転に役立てている。

図4:新BPMシステム用軌道表示パネル

4.まとめと今後の課題

入射器では、高速ビームモード切り替えによる KEKB・PFの3リング同時トップアップ入射に成功 した。これに伴い、Windowsベースの4チャンネル デジタルオシロスコープを使用した高速BPM DAQ システムを開発した。19台の旧システムは、23台の 新システムヘすべて置き換えられ、安定な50 Hz ビーム位置計測が実現している。運転用ソフトウェ アは、EPICSを基本として構築され、各オシロス コープは、独立したEPICS IOCとして動作している。 これにより、拡張性及び保守性の高いシステム構成 を実現している。また、本システムを基本として改 良された同様なシステムが、KEKB-BT用のBPM DAQシステムとして開発・運用されている^[8]。

今後は、陽電子生成標的下流のビームラインに於 いて、KEKB電子/陽電子の1 nCビーム及びPF/PF-AR 用0.1 nCビームを別々のオシロスコープチャンネル にて処理することにより、0.1 nCビームの測定分解 能向上を目指す予定である。

参考文献

- [1] 佐藤政則, 日本加速器学会誌 第3巻2号 2006, p.171.
- [2] 佐藤政則, 日本加速器学会誌 第5巻2号 2008, p.144.
- [3] T. Suwada, et al., "Stripline-type beam-position-monitor system for single-bunch electron/positron beams", Nuclear Instruments and Methods in Physics Research A 440 (2000) pp.307-319.
- [4] K. Furukawa, et al., "BEAM FEEDBACK SYSTEMS AND BPM READ-OUT SYSTEM FOR THE TWO-BUNCH ACCELERATION AT THE KEKB LINAC", Proc. of ICALEPCS2001, San Jose, 27-30 Nov. 2001.
- [5] http://www.aps.anl.gov/epics/
- [6] Takuya Kudou, et. Al., "Development of the user interface for the event system in KEK Linac", in these proceedings.
- [7] Siro Kusano, et al., "INTRODUCTION OF EVENT TIMING SYSTEM IN KEK LINAC", in these proceedings.
- [8] Tomohiro Aoyama, et al., "Upgrade of Readout System for Beam Position Monitors in the KEKB Beam Transport Line", in these proceedings.