SuperKEKB の入射ビーム選択システムの検討

(Injection Beam Scheduling at SuperKEKB Complex through Damping Ring)

古川和朗、船越義裕、菊池光男、菊谷英司、生出勝宣、 佐藤政則、中村達郎、末竹聖明、諏訪田剛、矢野喜治

高エネルギー加速器研究機構 (KEK)

Kazuro Furukawa, KEK, Aug.2010.

1

 600m Linac ◆KEKB 非対称エネルギーコライダ (→ SuperKEKB) HER 8-GeV e- 1nC x2 LER 3.5-GeV e+ 1nC x2 (with 10nC primary e-) PF-AR KEKE (Advanced Ring for ◆PF 放射光施設 pulse X-ravs) 2.5-GeV e- 0.1nC ◆PF-AR 放射光施設 3-GeV e- 0.2nC

SuperKEKB Beam Scheduling

KEKB での入射タイミング要件

◆ 複数周波数 (114, 571, 2856, 509MHz) の安定生成 ◆ 大電流陽電子生成のための 10nC シングルバンチビームのバンチング ◆ 逓倍・分周による整数関係が必要 (共通周波数 10.38MHz) ◆30 ピコ秒のリング入射タイミング精度 ✤ KEKB リング周波数 509MHz との整数関係も必要 □ PF・PF-AR は入射条件は厳しくないため、偶然の同期で実現 ◆ 周長補正は KEKB・PF・PF-AR で独立 ◆ KEKB は 4x10⁻⁷ 変化、PF、PF-AR は 4~20x10⁻⁶ 程度 ◆ 1 パルス 2 バンチ入射 ✤ KEKB - Linac 共通周波数 10.38MHz (=96ns) 間隔 ◆ KEKB HER/LER と PF は同時 Top-up 運転を実現 ✤ KEKB と PF-AR はビームトランスポートラインが共通 同時入射は不可能 Ц

KEKB でのビーム選択

◆KEKB HER、LER 及び PF への同時入射 ◆各リングの要求入射頻度を調停し 50Hz ビームを振り 分ける

Remote controlled automatic pattern arbitrator

InjPattern-multi 🗆 🗆 🗸					
File	InjPattern-multi				v0.4
Priority	📕 base 50Hz 📃 b	ase 25Hz	Update: 200	Update: 2009/04/28 10:51:43	
PF-A1 e-	KEKB e-	KEKB e+	PF(CT) e-	PF-A1 e-	AR e-
KEKB e+ KEKB e-	25 Hz 😑	0.000 Hz 😑	0.000 Hz 🛁	0.5 Hz 🛁	0.000 Hz 🛁
AR e- PE(CT) e-	Set	Set	Set	Set	Set
KEKB e- Study	12.500 Hz	25.000 Hz	0.000 Hz	0.500 Hz	0.000 Hz
KEKB e+ Study	12.500 Hz	25.000 Hz	0.000 Hz	0.500 Hz	0.000 Hz
PF(CT) e- Study	KEKB e- Study	KEKB e+ Study	PF(CT) e- Study	PF-A1 e- Study	AR e- Study
PF-A1 e- Study AR e- Study	0.000 Hz 😑	0.000 Hz 😑	0.000 Hz 🖃	0.000 Hz 😑	0.000 Hz 😑
-	Set	Set	Set	Set	Set
1 12	0.000 Hz	0.000 Hz	0.000 Hz	0.000 Hz	0.000 Hz
Up Down	0.000 Hz	0.000 Hz	0.000 Hz	0.000 Hz	0.000 Hz
	Read ALL Set ALL "O Hz"				Set ALL
Ready.					

◆Recent typical operation. ¤~37Hz for KEKB LER (3.5GeV e+) ¤~12.5Hz for KEKB HER (8GeV e-) ¤~0.5Hz for PF (2.5GeV e-)

Manual pattern generator

KEKB のビーム・バケット選択

◆パルス電源の特性などからビーム入射間隔に制限がある

- ◆リング内バケット選択は速いタイミングとは半 独立にリング内のバンチ電流の少ないバケットに 入射できるタイミングを選択
 - ◆KEKB は 509MHz 5120 バケットを持つ
 - ◆Linac Ring 共通周波数 10.38MHz は 49 バケット (96ns) に相当
 - ◆最大 5120 x 96ns = 約 500µs 待つと全てのバケットを選択できる

タイミング同期関係

 Synchronization Req. ♦KEKB : < 30ps</p> ♦PF : < 300~700ps</p> Linac rf is Synchronized to KEKB rf Event Clock is 114.24MHz We have to manage Circumference compensation Bucket selection Injection phase controls

イベントタイミング制御システムの構成

Linac Event System

Specifications

- Event rate : 114.24MHz
 - ¤Bit rate : ~2.3GHz
- ♦ Fiducial rate : 50Hz
- *Timing jitter (Short term) : ~8ps
- ♦No. of defined events : ~50
- No. of receiver stations : 17

▼ Trig External Direct ▼ 500.0m⁴

B÷ Main ① ② ③ 50.0000ps B÷ 19.015n B÷ №℃ 3.24 PM 8/4/2008

SuperKEKB への増強 ◆SuperKEKB のナノビームスキーム ◆低エミッタンス大電流入射ビームの要請 × 電子はフォトカソード RF 電子銃 (7GeV, 5nC) × 陽電子は捕獲セクションの改造とダンピングリング増設 × 40 倍のルミノシティ **KEKB SuperKEKB** ◆ダンピングリングの設計 **e**+ e+ee-4GeV 8GeV 3.5GeV 7GeV × RF 周波数の選択 1nC 1nC 5nC 4nC □ ハーモニック数の選択 10µm 100µm 2000µm 20µm ♦ PF-AR 入射 2bunch 2bunch 2bunch 2bunch × KEKB とビームトランスポートを共有 ビーム切り換えと入射に 5-10 分ほど必要 SuperKEKB のビーム寿命予測約 10 分 → 実験の中断が避けられない SuperKEKB Beam Scheduling Kazuro Furukawa, KEK, Aug.2010. 12

ダンピングリングの RF

- ◆メインリング (MR) バケット選択
 - ♦ MR は 509MHz 5120 バケットを持つ
 - ◆ Linac MR 共通周波数 10.38MHz は 49 バケットに相当
 - ◆最大 5120 x 96ns =約 500µs 待つと全てのバケットを選択できる
- ◆RF として 10.38MHz の整数倍を選ばないと上の条件 よりもさらに自由度は下がる
 - ◆ 509MHz, 571MHz などは可能
 - ◆ 476MHz, 714MHz などは有用ではない

♦CW クライストロン等の資源を考えると 509MHz を選ぶことが適当と思われる

ダンピングリング (DR) – Linac - SuperKEKB メインリング (MR)

◆Linac 後半の位相を固定する場合の入射選択可能 MR バケット数 ◆ハーモニック数 hDR=224、キッカー立ち上がり 96ns として 2ms 以内で探す場合 ×49*2~hDR-49 で 1760 個 (1 バンチ入射) ×49*2~hDR-49*2 で 662 個 (2 バンチ入射) ♦ hDR=225, 2ms 以内 ×49*2~hDR-49 で 2123 個 96ns ×49*2~hDR-49*2で1008個 前のパルス ♦ hDR=223, 2ms 以内 >100ns ×49*2~hDR-49で2096個 ×49*2~hDR-49*2で971個 1**0**0ns ♦ hDR=230, 2ms 以内 次のパルズ ×49*2~hDR-49で5120個 96ns ×49*2~hDR-49*2 で 3065 個 ♦ hDR=245, 2ms 以内 ×49*2~hDR-49 で 2048 個 ×49*2~hDR-49*2で1024個 ♦hDR=252, 2ms 以内 ×49*2~hDR-49 で 4986 個 <u>249*2~hDR-49*2で3447個</u>

🔄 SuperKEKB Beam Scheduling

- ◆現実的な周長で自由度の大きなハーモニック数として、230を選ぶことが適当と思われる
- ◆この方法で直接選択できないバケットについても
 - ◆ DR 出射後、Linac 後半の位相をパルス毎に変更する
 - ◆ DR 蓄積中に DR 位相を変更する
- ◆とすれば選択可能
 - ◆ 前者について、電子との切り換えの際いずれにせよ位相変更は
 必要
 - × ただし再現性だけでなく LLRF の直線性も必要となる
 - ◆ 後者について、次のパルスとの依存関係が増えるので不利

PF-AR の入射

◆ PF-AR のビームトランスポートは SuperKEKB と共通 ◆ 10 分で切り換え入射、または 7GeV e-、4GeV e+ ◆ SuperKEKB のビーム寿命が 10 分程度と短いため、PF-AR へ の切り換え入射は Belle2 の実験中断を意味する ◆ ダンピングリング経由の 4GeV 陽電子同時入射の可能性? ✤ 残念ながら Top-up は不可 ◆ PF-AR の周長補正は SuperKEKB と独立 ◆ PF-ARの RFは Linacと整数関係に無い(補正量 4x10⁻⁶ vs. 4x10⁻⁷) ◆ 偶然の入射確率 (300-700ps 精度 2ms 以内) は、ダンピングリ ングを経由すると約1/11 になるが不可能ではない ◆パルスを跨いでも同期を維持するため入射時には周波数を Linac に対して固定する必要 ◆ (入射エネルギーは Belle2 実験に依存)

SuperKEKB Beam Scheduling

まとめ

◆KEKBの同時入射タイミングと比較しながら、SuperKEKBのダンピングリングを含めた入射タイミングを検討した

◆PF-AR も含めて入射スケジュールの構成は可能

◆検討結果も含めて、ダンピングリングの設計が 進んでいる

◆イベント制御システムと LLRF システム (特に 直線性)の詳細の検討を継続する

Thank you

Simultaneous Top-up Injection Results

Time¹

BI 05

BL09

BI 13

Lifetime :

BL01 CLOSE

Beam Current: 449.9 [mA]

0.0

BL 02

BI 06

RI 10

14

[A•min]

[Pa]

7000.0 [A•h]

BL04

BI 08

12

16

I* T :

∫ Idt:

BL03

BL 07

_15

[hours]

0.0

Vacuum : 2.1E-8

Beam currents are kept within KEKB 1mA (~0.05%) PF 0.05mA (~0.01%)

Three-fold Independent Closed Loops

Feedback loop software act on one of three virtual machines

Managing independent parameter sets

Kazuro Furukawa, KEK, Aug.201023