KEK における ILC クライストロン電源開発の現状 PRESENT STATUS OF ILC KLYSTRON MODULATOR DEVELOPMENT AT KEK

明本光生#, 中島啓光, 本間博幸, 松本利広, 道園真一郎, 設楽哲夫, 福田茂樹

Mitsuo Akemoto[#], Hiromitsu Nakajima, Hiroyuki Honma⁾, Toshihiro Matsumoto, Shinichiro Michizono,

Tetsuo Shidara, Shigeki Fukuda

High Energy Accelerator Research Organization

Abstract

This paper describes present status of ILC klystron modulator development at KEK. The ILC klystron modulator drives a multi-beam klystron up to 10 MW peak power, 1.65 ms rf pulse width and 5 Hz repetition rate. KEK has already developed transformer-type modulators, which have a direct-switched-type design with a 1:15 step-up transformer and a bouncer circuit to compensate the output pulse droop within 1%(p-p). Recently, KEK is developing three kinds of Marx-type modulators which have no large transformer.

1. はじめに

KEK では ILC 計画に向けて 10 MW クライストロ ン用大電力長パルス電源の開発が進められている。 これまで、KEK では絶縁油タンクに入った高圧パル ストランスを使用したバウンサー型パルス電源を開 発した。近年では、このパルストランスを使用しな い Marx 型パルス電源の研究開発を進めている。本 稿では現在進行中の 3 種類の Marx 型パルス電源の 開発状況について報告する。

2. ILC クライストロン電源

2.1 電源の概要

ILC の主ライナックの高周波源には、1.3 GHz、 10MW クライストロンが 378 本使用される。電源は ピーク電圧 120 kV、ピーク電流 140 A、パルス平坦 部 1.65 ms、パルス平坦度 1%(p-p)、繰り返し 5 Hs の 大電力長パルスを発生するパルス電源である。Table 1 に Technical Design Report(TDR)^[1]で示された主ライ ナックのクライストロン電源の仕様を示す。設置台 数の規模と地下トンネル内で使用することから、特 に電源の高稼働率化、小型軽量化、低価格化が求め られる。

通常、コンデンサバンク、スイッチとパルストラ ンスで構成するパルス電源ではパルス平坦部が 1.65 ms と長いパルスを発生させる場合、コンデンサバ ンクの大きさが巨大になってしまう。この問題を解 決するために、パルスドループ 20%を補償する回路 (LC 共振回路で正弦波の直線部分を利用する)を組 み込んで、コンデンサバンクの容量を 1/20 に減らし たバウンサー型電源^[2]が開発された。しかし、まだ サイズが大きくて価格の高いパルストランスが必要 なため、この方式の電源はサイズ、コスト面で限界 がある。そこで、パルストランスを必要としない半 導体スイッチを使用した Marx 型パルス電源が注目 されるようになった。 2.2 Marx 型電源

Figure 1 と 2 に半導体スイッチを使用した簡単な Marx 型パルス電源の構成図とセル回路をそれぞれ 示す。セル回路は主に充放電用コンデンサ、充放電 用スイッチ及び充電ダイオードから構成している。 充電時には充電スイッチ(SW_c)が ON 状態、放電ス イッチ(SW_b)は OFF 状態になる。放電時には反対に 充電スイッチが OFF され、放電スイッチは ON 状態 になる。従って、充電時には各セルのコンデンサは 並列接続で充電され、放電時には各セルは直列接続 されて放電するので、セルの段数倍の高圧パルスを 発生させることができる。

Table 1: Parameter specifications for the klystronmodulators of the main linac of ILC

Output voltage	120 kV
Output current	140A
Pulse width(flat-top)	1.65 ms
Pulse repetition frequency	5(10) Hz
Max. average power	139 kW
Output pulse flat-top	1%(P-P)
Pulse-to-pulse voltage fluctuation	1%(P-P)
Enegy deposited into klystron during a gun spark	< 20 J

Figure 1: Simple block diagram of a Marx modulator.

Figure 2: Simple single cell circuit.

Marx 型の利点はモジュール式の回路構成のため、 規格化されたセルを多用するので量産に向き,また 組み立てが容易であること、また使用される部品、 特に半導体スイッチ、コンデンサ等の耐圧は充電電 圧でよいので、汎用品が利用できることから電源の 大幅な低コスト化ができる。一番の大きな利点はパ ルストランスが必要ないことである。それと同時に パルス立ち上がり、立ち下がり特性も大きく改善で きる。これらの利点から、Marx 型電源技術は ILC 用に限らず、パルス電源の基盤技術として期待でき る。

3. Marx 型電源の開発

3.1 概要

KEK では3種類の Marx 型電源の研究開発が進め られている。一台目は SLAC から貸与された Diversified Technology Inc. (DTI)社製の電源、二台目 は SLAC で開発された SLAC P2 Marx 電源、三台目 は KEK と長岡科学技術大学の共同研究で行ってい るチョッパ型 Marx 電源である。いずれも ILC 用で あるが、設計思想の違いがある。主な特徴を比較し たものを Table 2 に示す。Redundancy (冗長性)は予備 のセル数を示し、直列冗長性をもたせることで電源 の信頼性を向上させている。個々については次の節 で詳しく述べる。

	SLAC P2	DTI	KEK
Cell voltage(kV)	4	6	6.4
Number of cells	32	20	20(80)
Input DC(kV)	4.2/1.2	10	2
Insulation	Air	Oil	Air
Redundancy	N+2	N+1	N+1
Regulation	PWM corrections	(16)0.9kV correction cells	PWM corrections

3.2 DTI 電源^[3]

米国の DTI 社で開発された電源である。この電源 は、フル性能を評価することを目的として、SLAC から KEK に貸与された。

この電源は絶縁オイルによる絶縁及び冷却方式に よって小型化を図っている。設計仕様は出力電圧 120-150 kV, 出力電流 120-150 A, 繰り返し 5 Hz であ る。Figure 3 に回路構成とセルの回路を示す。入力 電源は 5-10 kV の DC で、先ず 6.5 kV 降圧チョッパ 回路(PS1)を通して 20 段の 6 kV Core Module (主セ ル回路)が接続され、その後0.9 kV降圧チョッパ回 路(PS2)を通して 16 段の 0.9 kV Core Module (補正セ ル回路)に接続される回路構成になっている。それ ぞれのセルは充電時に並列に充電され、パルス発生 時に、20段の主セル回路が同時に ON され出力パル スを生成する。一方、そのドループを補正するため に 16 段の補正セル回路は順次 ON することによっ て階段状の波形を生成する。これらを合成されてフ ラットな出力パルスになる。すべての回路部品はオ イルタンク(2.5 mW, 1.5 mD, 2 mH)内に収納されてい る。

Figure 3: Block diagram of DTI modulator and cell circuit.

性能を調べるために KEK の超伝導リニアック試 験施設 (STF)棟でクライストロン負荷による試験運

Table 2: Variants of the Marx modulator research

転を行った。Figure 4 にテストスタンドの写真を示 す。

Figure 4: Photograph of STF test stand.

DC 電源は3相420 V AC,50 Hz をトランスで昇圧、 全波整流して9kVDC を DTI 電源に入力した。出力は 10 m の高圧同軸ケーブルでクライストロン(TH2104) 負荷に接続した。

Figure 5 に出力パルスのフラット部の波形調節し た後の 112 kV, 74 A, 1.5 ms の波形を示す。パルス電 圧の立ち上がり時間(10-90%)は 15 µS でまたフラッ トネスも 0.4%(p-p)で大変良好な波形が得られた。こ の時の PS1 は 6.1 kV, PS2 は 671 V であった。

Figure 5: Measured modulator output voltage, current and control signal waveforms. Ch1: Pulse current 40A/V, Ch2: Pulse voltage 15 kV/V, Ch3: Feedback integrated control, Ch4: Command

試験運転は 120 kV, 80 A, 1.5 ms, 5 Hz まで行った が、数時間連続運転中に、Corrector module の IGBT が短絡故障、PS2 のフィルターコンデンサの故障な どが起こり、それらの改善が必要である。

3.3 SLAC P2 電源の製作

現在、SLAC で開発された SLAC P2 Marx^[4]を SLAC の許可と技術協力を得て 1 台製作中である。 この目的は先進の P2 Marx の電源技術を学ぶことと、 その性能を評価することである。

Figure 6 に P2 Marx セルの回路を示す。このセル 回路には二つの機能をもった回路が直列に結ばれて いる。一つは主パルス(20%パルスドループを持つ) を発生する回路と、もう一つはその 20%のパルスド ループを補償するチョッパ回路である。チョッパ回 路はパルス幅変調(PWM)制御でドループに合わせて 電圧を上げて、パルス平坦部を補償する。それぞれ の回路には 4.2 kV と 1.2 kV の独立の充電ラインが 必要である。セル単位としては 4 kV の矩形波パル スを発生する。セルはアルミ製シールドケースに収 納されている。

Figure 6: P2 Marx cell circuit.

Figure 7 に 32 セルが収納された P2 Marx 電源全体 の外観写真を示す。電源筐体のサイズは 3.5 mW, 1.7 mD, 2.4 mH である。各セルのケースはメンテナンス 性を重視して、気中、強制空冷で使用する。重量は 23 kg と一人で容易に交換できるようになっている。

Figure 7: Photograph of the P2 Marx modulator.

Figure 8 に水負荷で測定された出力パルス電圧波 形を示す^[5]。パルスの立ち上がり、立ち下がり時間 は 15 µs 以下で、波形の平坦度は 0.1%(p-p)と大変良 好なパルス特性が得られている。現在、SLAC では 10 MW マルチビームクライストロンを負荷として、 長期寿命試験を行っている。

Figure 8: Measured modulator output voltage into a water load.

現在、KEK では2セルの高圧試験を行うためのテ ストスタンド¹⁶¹を製作している。また STF 棟でフル 運転の試験ができるテストスタンドも準備している。

3.4 チョッパ型 Marx 電源^[7]

チョッパ型電源は単純な回路で、PWM 制御で出 力電圧を制御できる電源である。チョッパ型 Marx 電源はこのチョッパ型電源をセル回路として使用し たものである。P2 Marx と比較すると一つの回路で 矩形な波形がつくれ、充電 DC 電源も一種類ですみ、 制御も簡単である。

Figure 9 に試作したチョッパ型セルの回路を示す。 1 セルの仕様は充電電圧:2.0 kV、出力電圧:1.6 kV、出力電流:140 A、出力インピーダンス: 11.4 Ω 、パルス平坦部:1.65 ms、立上り時間:0.1 ms 以下、出力電力:1.9 kW である。充電時は、 放電用 IGBT スイッチ SW_Dが OFF 状態、充電用 IGBT スイッチ SW_Cが ON 状態で各セルの放電コン デンサに充電される。放電時 (パルス発生時)は充 電用スイッチ SW_Cが OFF 状態で、放電用スイッチ SW_Dはスイッチング周波数 50 kHz で PWM 制御し て出力 1.6 kV が一定になるよう制御される。各セル のリップルは LC フィルターで可能な限り小さくし、 全セルについては各セルのゲート信号に位相差を与 えてリップルがキャンセルするようにして低減する。

Figure 9: Cell circuit for chopper-type Marx.

Figure 10 にセルの試作基板の外観を示す。セルを 小型化するために、充放電用コンデンサは電解コン デンサを採用した。スイッチは IGBT を使用しヒー トシンクが装着されている。サイズは 300 mmW, 400 mmD, 57 mmH である。メンテナンス向上のため、 4 セルをまとめて 1 つのユニット(370 mmW, 470 mmD, 350 mmH)にする。電源筐体は 20 ユニットを 収納し、サイズは 2.7 mW, 1.3 mD, 2.3 mH になる。 P2 Marx と比べてかなり小型である。

Figure 10: Photograph of cell board.

1 ユニット(4 セル)の高圧出力動作試験を行った。 Figure 11 に抵抗負荷での出力電圧波形を示す。出 力電圧が一定でリップルを小さくなるようゲート 信号を FPGA にて作成し、PWM 制御を行った。 フラット部の平均電圧 6.2 kV、電流 147 A、パル ス幅 1.7 ms、最大リップル 6.1%の結果を得た。 リップルはセルの数を増やしていくことによって 減らすことができ、シミュレーションの結果では 20 ユニットで 0.5%以下になる。

Figure 11: Measured Marx unit(4 cells) output voltage into a resistor load.

今後は1ユニットの5 Hz 運転での長時間安定動 作の確認等実用化に向けた試験を進める。

4. まとめ

KEK では3種類のマルクス型電源の研究開発が行われている。DTI 電源は試験運転が行われ、基本性能が確認された。P2 Marx 電源は現在製作中で来年3月末に完成し、春頃試験できる予定である。 チョッパ型 Marx 電源は1ユニット(4セル)の出力波形性能が確認された。今後 Marx 型パルス電源の実用化を進めていく。

謝辞

チョッパ型 Marx 電源の開発にあたりまして、長 岡科学技術大学の江偉華氏、徳地明氏、天神薫氏、 佐藤祥氏、小笹有輝氏に大変お世話になりました。 この場をお借りしてお礼を申し上げます。本研究は KEK の共同開発研究による。

参考文献

 [1] ILC Technical Design Report Volume 3 – Accelerator, 2013, <u>http://www.linearcollider.org/ILC/Publications/Technical-</u>

<u>Design-Report</u>. [2] 明本光生,他,"KEK 超伝導加速器試験施設(STF)

- に於ける 10MW クライストロン用長パルスモジュ レータの開発", Proceedings of Particle Accelerator Society Meeting 2009, pp.773-775(2009).
- [3] F. Arntz, et al., "New concepts for pulsed power modulators: Implementing a high voltage Solid-State Marx Modulator", Proceedings of Power Modulator and High Voltage Conference, pp. 28-30, 2012.
- [4] M.A. Kemp, et al., "Final Design of the SLAC P2 Marx Klystron Modulator", Proceedings of Pulse Power Conference, pp.1582-1589, 2011.
- [5] M.A. Kemp, et al., "The SLAC P2 Marx", Proceedings of Power Modulator and High Voltage Conference, 2012.
- [6] 中島啓光, 他, "KEK における SLAC P2 Marx 型クラ イストロン電源のテストスタンド", Proceedings of this Meeting.
- [7] 小笹有輝,他, "ILC 用半導体マルクス電源", Proceedings of this Meeting. SAP055.