Super KEKB 用 RF gun のコミッショニング状況 COMMISSIONING OF RF GUN FOR Super KEKB

夏井 拓也#, 吉田 光宏, 周 翔宇, 張 叡, 小川 雄二郎

Takuya Natsui[#], Mitsuhiro Yoshida, Xiangyu Zhou, Rui Zhang, Yuujiro Ogawa High Energy Accelerator Research Organization, KEK/SOKENDAI

Abstract

The injector linac of KEK is being upgraded for SuperKEKB. High-charge low-emittance electron and positron beams are required for SuperKEKB. The required injection electron beam parameters are 7.0 GeV at 5 nC 20 mm-mrad. A thermal cathode DC gun had been used for KEKB. However the DC gun could not make low-emittance beam. Thus low-emittance new RF gun is being developed. We are developing an advanced RF gun which has two side coupled standing wave field. We call it quasi-traveling wave side couple RF gun. This gun has a strong focusing field at the cathode and the acceleration field distribution also has a focusing effect. This RF gun has been installed KEK J-linac. Beam commissioning with the RF gun is in progress.

1. はじめに

現在, KEK では SuperKEKB に向けた加速器全体 のアップグレードが行われている. SuperKEKB では 非常に高いルミノシティを得るための低エミッタン ス化によりダイナミックアパーチャーの減少とビー ム寿命の減少が起こる. これに対応して, 電子陽電 子入射器は高電荷・低エミッタンス化が求められる. KEKB と同様に電子陽電子ともに2バンチ運転でリ ングに入射するが,表1に示すように SuperKEKB では大幅なビームパラメータのアップグレードが必 要になる. 陽電子ビームの低エミッタンス化に向 けては新たにダンピングリングの建設が進められて いる. しかし, 電子ビームはダンピングリング無し で 20 mm-mrad という低エミッタンスをバンチあた り 5 nC という高電荷ビームで実現しなくていけな い.

Table 1: The required injection beam parameters		
	KEKB	SuperKEKB
	(e+/e-)	(e+/e-)
Charge [nC]	1 / 1	4 / 5
Emittance	2100 / 300	20 / 20
[mm-mrad]		

KEKB では熱カソード DC gun が電子源として使 用されてきたが、ダンピングリング無しで 20 mmmrad 5 nC という高電荷低エミッタンスを達成する のは非常に困難である.したがって、SuperKEKB で はフォトカソード S-band RF gun を使用することに なった.しかしながら通常使用される 1.5 cell onaxis coupling の RF gun では1 nC 程度の電荷発生が 限度であり、全く新しい RF gun の開発が必要に なった.そこで、Disk and Washer (DAW) 型やサイ ドカップル型の軸外結合の空洞を検討した.DAW 型の RF gun はすでに開発、試験を終えている.こ の RF gun の試験を通して狭い加速ギャップによる ビーム集束の効果や Ir₅Ce のカソードの量子効率な どを確認することができた^[1,2].

DAW 型の RF gun では,ある程度の高電荷ビーム 発生の試験は可能であったものの 5 nC のスペース チャージによる発散力に対する集束電場はまだ弱く, 更に強い集束電場を発生させるような RF gun が必 要であることがわかった.そこで,サイドカップル 空洞を軸上に2つ配置した擬似進行波型と呼ばれる 空洞を新たに開発した^[3].

例えば、図1(a)のように加速ギャップを狭くした サイドカップル空洞では必然的にドリフトスペース が長くなり、効率的な加速方法とは言えない.そこ で、図1(b)のようにドリフトスペースに当たる部分 に独立したもう一つのサイドカップル空洞を配置し てやる.更に、この2つの定在波空洞にπ/2 だけ位 相差をつけて RF を投入すればビームからみると進 行波に乗っているように見える.故にこの構造を擬 似進行波型サイドカップル空洞と呼んでいる.この 構造は非常に効率よく加速とビーム集束とを行うこ とができる.

⁽b) Quasi traveling wave side coupled cavities Figure 1: Structure of the quasi traveling wave cavity

[#] takuya.natsui@kek.jp

2. コミッショニング状況

KEK 入射器は J-linac と呼ばれる J 型に配置された linac で形成される. RF gun は入射器の最上流であ る A1 sector に配置され,その側近でレーザシステム も構築されている. 図 2 に A1 の配置図を示す. レーザシステムは,Yb ファイバーを使った発振器 とYb ファイバーによる DC アンプ,Yb:YAG thin disk によるパルスアンプで構成させる^[4].レーザの 中心波長は1035 nm で,非線形結晶を用いて4倍波 を作り Ir₅Ce フォトカソードに入射し電子源とする. Yb 系のレーザは広帯域であるので時間方向のパル ス成形が可能であり,低エミッタンスに最適なパル ス形状を実現できる可能性がある.パルス成形とリ アルタイムエミッタンス測定を組み合わせて常に低 エミッタンスビームを供給することが最終的な目的 である.

Figure 2: A1 layout

2.1 RF gun への入射レーザの測定

レーザハットは A1 の RF gun に隣接して構築され ている. レーザハット内では Yb レーザの基本波 1035 nm をパスル幅 30 psec で数十 mJ のパワーに増 幅する. また, レーザハット内で BBO 結晶を使い 2倍波への変換を行い, RF gun 直近までは2倍波で パスルを輸送している.

Figure 3: Optics for laser injection

4倍波への変換は RF gun の直前の BBO 結晶で 行っている.図3に RF gun 直前の光路の写真を示 す.カソードには 60 度の角度で入射しており,電 動のテレスコープとミラーにより遠隔でスポットサ イズと位置を調整できるようになっている.4倍波 のレーザプロファイルも CCD カメラでモニターで きるようになっている.図4にランダムに抽出した 10 ショットを示す.レーザプロファイルは非常に汚 くパルスごとのばらつきも大きい.このレーザの不 安定性は大きな問題となっている.

Figure 4: laser profiles of consecutive 10 shots

2.2 Q-scan エミッタンス測定

RF gun で生成したビームのエミッタンスは図2に 示めされた A1 のスクリーンモニタで Q-scan 法に よって測定された.測定された規格化エミッタンス はビーム電荷 0.6 nC のときに水平方向 13.4 +/- 5.9 , 垂直方向 8.05 +/- 0.47 [mm-mrad] であった.高電荷 (5.0 nC)でのビーム測定が望ましいが,レーザの不安 定性で現在は測定に至っていない.

2.3 シケインによるバンチ長圧縮

RF gun の中では空間電荷によるエミッタンス悪化 を避けるために 20 psec から 30 psec の長いバンチ長 でビーム加速を行っている.しかし,linac では ウェークによるエミッタンス悪化を防ぐために 10 psec のバンチ長が望ましい.そのため A1 sector の シケインでバンチ長圧縮を行うこととした.シケイ ンの下流にはストリークカメラが配置され OTR に よる発光を観測することでバンチ長の測定が可能で ある.A1 の linac の RF 位相を変化させバンチ長の 変化を観測した.その結果,図5のように 20 psec から 10 psec へのバンチ圧縮が観測された.

Figure 5: Results of streak camera measurements

2.4 ビーム電荷履歴

前年度の夏以降は 25 Hz 運転のレーザシステムの 構築を行ってきた.しかしながら,5Hz運転にくら べthin disk のYb:YAG 結晶によるレーザ増幅は繰り 返しの増加に伴う熱負荷により増幅率が大幅に低下 した. 増幅率の低下を補うために増幅段の段数を増 やしたが、より複雑なシステムになったためにレー ザの安定度は著しく低下した.また、レーザ発振器 も運転を続けるにつれ位相の安定度が低下し、高周 波加速に使う RF との同期が外れる頻度が次第に高 くなりビームが全く発生しないようなパルスも増え ていった.図6は RF gun から発生したビーム電荷 の一ヶ月にわたる履歴であるが、長期的にも短期的 にもビーム電荷が不安定であることが分かる. ビー ム電荷としては最高で 5 nC 近くまでのビーム発生 が確認でき RF gun としては目標の電荷量を達成す る性能を有していることが示される.しかし,長期 運転で使用するにはレーザの安定度を大幅に改善す る必要がある.

Figure 6: Beam charge of RF gun

2.5 RF コンディショニング

RF gun 空洞の RF パワーの最終目標値は 20 MW 1 µsec である.しかし,コンディショニングの進捗は 遅く,現在は 14 MW 600 nsec を達成するにとどまっ ている.これは頻繁に空洞内で放電が起こってしま うためである.放電の原因の一つにレーザのミスオ ペレーションによるアブレーションがあげられる. これは,カソード表面でレーザスポットを小さくし すぎたために起こり,取り外したカソードにはその 放電痕が確認された.このアブレーションと放電に より空洞内が汚染させた可能性もある.また,カ ソードを取り付けているカソードロッドの RF コン タクトをとっている部分にも多くの放電痕が残って いた.これはコンタクトが甘く同軸形状になってし まったために RF が染みこんだと考えられる.

3. RF gun 空洞の改善

空洞にパワーが入らないという問題点を改善する ため、新たに空洞を制作した.これは、カソード ロッドの同軸部分をチョーク構造に改良し RF が染 み出さないような構造となっている.また,カソー ドの固定も冷やしバメにし,カソード付近のでの僅 かな公差をなくすようにした.この空洞で RF コン ディショニングがどの程度進むかを今後評価する予 定である.

また、問題点を洗い出すため加速空洞も複雑な擬 似進行波空洞ではなく単純な構造にした RF gun も 製作中である、これの空洞でカソードの固定方法や チョーク構造の優位性を確かめたいと考えている. また、現在の空洞はビームホールが小さすぎるため 0 度のレーザの入射には対応していない.新しい空 洞では0度入射にも対応している.図7に空洞の形 状を示す. ノーズ付きの加速空洞で APS 空洞になっ ており、空洞同士の結合はディスクに開けられた穴 でとられる軸外結合である. 必要な電力も7 MW と 小さく擬似進行波空洞よりも放電リスクは少ないと 考えられる. ビームに及ぼす集束電場は擬似進行波 空洞よりは小さいが 5 nC のビーム発生が可能であ るというシミュレーションの結果を得ている. 今後 この空洞でのスタディーも行っていきたいと考えて いる.

Figure 7: Simple cavity RF gun

参考文献

- T. Natsui et al., "DEVELOPMENT OF HIGH-CHARGE, LOW-EMITTANCE, RF GUN FOR SUPERKEKB", THPS02, 第9回加速器学会,大阪,20128月
- [2] Daisuke Satoh et al., "Development of Better Quantum Efficiency and Long Lifetime IrCe Photocathode for High Charge electron RF Gun" MOPFI023, IPAC13, Shanghai, China (2013)
- [3] Takuya Natsui et al., "Quasi-traveling Wave Side Couple RF Gun Commissioning for SuperKEKB" MORPI033, IPAC14, Dresden, Germany, 2014
- [4] X. Zhou et al., "25Hz Sub-mJ Ytterbium Laser Source of RF Gun for SuperKEKB" WEPMA044, IPAC15