cERL 用デジタル LLRF 制御システム DIGITAL LLRF CONTROL SYSTEM FOR CERL

三浦孝子#, 荒川大, 片桐広明, チュウ フェン, 松本利広, 道園真一郎, 矢野喜治, 明本光生

Takako Miura[#], Dai Arakawa, Hiroaki Katagiri, Feng Qiu, Toshihiro Matsumoto, Shinichiro Michizono,

Yoshiharu Yano, Mitsuo Akemoto

High Energy Accelerator Research Organization (KEK)

Abstract

The digital LLRF system has been constructed for the compact ERL (cERL) which is the prototype of the 3 GeV ERL in KEK. The radiofrequency (RF) feedback and frequency feedback with tuner have been performed by using the μ TCA digital FPGA boards. The RF stabilities have almost satisfied the requirement for 3 GeV ERL, 0.01% rms in amplitude and 0.01° rms in phase. The validity of the RF stability was confirmed by the beam energy jitter of 0.003% rms.

1. はじめに

KEKでは次世代放射光源として3 GeVエネルギー回 収型リニアック(ERL)が検討され、その試験施設としてコ ンパクトERL(cERL)が建設された。2013年からビームコ ミッショニングが行われ、2016年現在では1 mAのビーム 運転に成功している[1]。

cERLは常伝導のバンチャー空洞1台(BUN)と2セル超 伝導加速空洞3台(INJ1,2,3)からなる入射器と、エネル ギー回収を行う9セル超伝導加速空洞2台(ML1,ML2)か らなる主線形加速器で構成されている(Fig.1)。RF周波 数は1.3 GHzで、空洞負荷Q(QL)や空洞電圧など現状の 1 mAビームに対する運転パラメータをTable 1に示す。エ ネルギーは、入射器出口で2.9 MeV,主空洞で加速後 の周回ビームは19.9 MeVとなっている。RF源について は、バンチャー空洞とエネルギー回収を行う主空洞は大 電力を必要としないので、8 kW~16 kWの半導体アンプ (SSA)を使用している。INJ1には25 kWクライストロンが使 われ、INJ2と INJ3はベクターサム制御により300 kWクラ イストロン1台で駆動されている。この300 kWクライストロ ンは、将来100 mAのビーム電流に対応するために導入 されたものである。

3 GeV ERLでは振幅、位相が0.01%、0.01°(rms)と高 いRF安定度が要求されており、cERLでは0.1%、0.1°が 要求安定度である。この安定度を満足するため、

Table 1: Operational Parameters

Cavity	$Q_{\rm L}$	V_{c}	Pin	RF source
BUN	1.125×10^{4}	30 kV	0.2 kW	8 kW SSA
INJ1	1.20×10^{6}	0.7 MV	0.5 kW	25 kW Klystron
INJ2	5.78×10^{5}	0.7 MV	2 (1-11)	200 I-W Klassen
INJ3	4.8×10^{5}	0.7 MV	-2.0 KW	500 KW Klystron
ML1	1.31×10 ⁷	8.6 MV	1.5 kW	16 kW Klystron
ML2	1.01×10^{7}	8.6 MV	2.0 kW	8 kW Klystron

takako.miura@kek.jp

Figure 1: Plan view of cERL.

cERLではデジタル低電力高周波(LLRF)系を導入し、開発・改良を行ってきた。入射器はβが1より低いエネル ギー領域にあり、INJ2,3ではベクターサム運転をおこなっ ているため、ここでの調整がビームのエネルギー変動に 影響を及ぼしやすい。主空洞はQ_Lが10⁷と高いため、マ イクロフォニクスの影響が懸念された。本稿では、cERL のLLRFシステムと現状の安定度について報告する。

2. デジタル LLRF システム

ERLで要求される高い安定度をめざし、空洞ピック アップからのケーブルを含むデジタルLLRF制御系は、 温度安定となるように対策を施した[4]。Figure 2にLLRF 制御室内の写真を示す。

Figure 2: LLRF control racks.

周波数の高いLO生成系は恒温槽内(±0.03℃)に入れ、ダウンコンバーターやデジタルフィードバックボード、 IQモジュレータなどは19インチラックごと恒温ハットに収 められている[3]。しかし、最近の測定の結果、温度だけ でなく湿度が大きく影響していることがわかり、特にLO生 成に用いている1.31 GHz±2.7 MHzのバンドパスフィル ターの影響が大きいことが判明した[4]。今後、湿度への 対策が必要であると考えている。

2.1 RF フィードバック系

Figure 3にRFフィードバック系のブロック図を示す。1.3 GHzのRF信号を10.156 MHz (1300 MHz/128)の中間周 波数(IF)にダウンコンバートし、µTCAデジタルFPGA ボードに入力している。このボードは、16bitのADC (LTC2208)が4ch、16bitのDAC (AD9782) 4chとデジタル I/Oポートがあり、FPGA (Vertex5FXT)を搭載している [5]。ボード製作にあたり、空洞のRFフィードバックと チューナー制御の両方に使用できるような構成とし、信 頼性の点からµTCAの規格を採用した。

IF信号は、81.25 MHz(1300 MHz/16)でサンプリングされ、FPGA内部でI/Q分離、振幅位相補正が行われ、ベクターサム演算が行われる。フィードバック制御は、比例・積分(PI)演算で行われているが、特に9セル空洞では、加速に使用されるπモード以外の8/9πモードなどの寄生モードがあるため[6]、フィードバック演算の前にあらかじめローパスフィルター(LPF)によって他のモードを除去している。各空洞に対するフィードバックゲインは、それぞれ値を変化させ、実験的に決定している[7]。クウェンチの事象を検出して素早くRFを停止するために、空洞の振幅レベルを判定する内部インターロックも組み込んでいる。

Figure 3: Schematic diagram of RF field feedback.

2.2 チューナー制御系

空洞の共振周波数フィードバックのためのチューナー 制御には、同じデジタルフィードバックボードを使用し、 FPGA内部のロジックをチューナー制御用に書き換えて いる。超伝導空洞の共振周波数制御には、ステッピング モーターで駆動されるスライドジャッキ型のメカニカル チューナーや高速に微調可能なピエゾチューナーが用 いられている[8,9]。デジタルボードのDAC出力をピエゾ 制御用に、デジタルI/O出力をステッピングモーターの制 御に適用している。フィードバックのブロックダイアグラム をFig.4に示す。空洞入力(Vf)と空洞のピックアップ信号 (Vc)をI,Q変換し、VcとVfの位相差(Δθ:離調角度)が0に なるようにチューナーを制御する。 位相補正(ROT)は、1.3 GHzの共振時に、位相が0に なるように校正した。次に振幅レベルがチェックされ、閾 値以上の時だけフィードバックが可能となる。空洞は、50 Hz付近からメカニカル共振が現れるため、20 Hzのロー パスフィルター(LPF)を通した後にΔθを求めている。ピエ ゾ側は積分演算、モーター側は比例演算を行い、イン ターロックなどでフィードバックが停止状態になった時に、 ピエゾに急激に大きな変動が生じないように、DACの値 は停止直前の値(HOLD値)に保持される。

DAC 出力は±2.5 V に変換され、+2.5 V のオフセット 電圧を足されて 0 V-5 V に変換される。これをピエゾ駆 動電源に入力して 10 倍に増幅し、0 V-500 V でピエゾ が駆動されている。

Figure 4: Schematic diagram of tuner control.

3. 空洞電場の安定度

ADC のノイズを除去するため、フィードバックループと は別に、モニター用に帯域を狭めたデジタル LPF を通し て、各空洞電場を測定した。振幅・位相に対する安定度 の結果を Table 2 に示す。主空洞では、マイクロフォニク スによる電場の振動が観測されたが[10]、Fig.5 に示すよ うに、フィードバック制御によって十分に安定化された。

Table 2: RF Stabilities

Cavity	θ_b	$\Delta A/A \text{ (rms)}$	$\Delta \theta_{c} (rms)$
BUN	90°	0.07%	0.04°
INJ1	0°	0.005%	0.007°
Vec.Sum (INJ2&INJ3)	0°	0.01%	0.02°
ML1	0°	0.003%	0.0094°
ML2	0°	0.003%	0.0086°

 θ_b : beam phase

Figure 5: Stability of ML2: 0.0033% rms in amplitude and 0.0086° rms in phase.

cERLで要求される0.1%, 0.1°(rms)の振幅・位相安定度 は満足している。特に超伝導空洞については、3 GeV ERLで要求されている0.01%, 0.01°(rms)をほとんど満足 している。INJ2とINJ3のベクターサムの箇所の位相だけ が、0.02°と2倍程度大きいが、これは、クライストロン電源 の300 Hzのリップルが原因で、電源電圧変動がクライスト ロン出力の位相変動に影響しているためである[11]。

4. ビームのエネルギー安定度

空洞の加速電場の安定度を確認するため、ビームの エネルギー安定度を測定した。ビーム条件は、5 Hz, 23 fC/バンチ,バンチ長3 psで、エネルギーは、19.9 MeVで ある。ビームの中心エネルギーの安定度を第一アークの スクリーンモニターで測定した。結果をFig.6に示す。そ の結果、ビームのエネルギー安定度は0.013% rmsで あったが、約15分毎にうねりが観測された。

Figure 6: Stability of beam energy. (Before improvement).

この変動の原因を調査したところ、Fig.7 の左図のよう に離調角度に15分程の頻度で同様の変動が見られた。 主空洞でも同じタイミングで変動が見られたため、低温 に冷やしている箇所に限定された。原因は、入力カップ ラーを冷却する液化窒素の流量調整の影響であると推 測された。

Figure 7: Stabilities of detuning angles $\Delta \theta$ (left) and cavity phases θ_c (right). (Before improvement)

空洞と高周波源が1対の場合には、離調が変化しても、 空洞電場の位相はRFフィードバックによって安定化され るが、ベクターサム運転を行っているINJ2,INJ3では、ベ クトル和が一定となるように制御されるため、Fig.7の右図 のように、各空洞の位相には大きな変動がみられた。もし、 ベクターサムを行う空洞の振幅・位相に校正誤差がある 場合、ベクターサムの結果に誤差が生じてしまう。また低 エネルギー領域では、エネルギーバランスで速度が変わ り、空洞から受けるエネルギーも多少影響すると考えられ る。そこで、対処的ではあるが、各空洞のRFバランスが できるだけ変動しないように、周波数フィードバックのゲイ ンを上げて、離調角が大きくならないようにチューナー制 御を改善した。DAC(16bit)の出力変動をFig.8に示す。 特にINJ1.2.3に対しては、DACの振幅変動が大きく、 ML2,3では少し中心がドリフトしているのが観測されてい る。全ての超伝導加速空洞で10分から15分毎に同じタイ

ミングで変動しており、それをDACで補正していることが わかる。

Figure 8: Trend graph of DAC output for 3 hours.

この改善の結果、Fig.9 の左図に示すように、離調角 $\Delta \theta$ に大きな変動は無くなり、全ての空洞で 0.1°rms から 0.2°rms の範囲の変動に収まっている。また、Fig.9 の右 図のように、INJ2, INJ3 の空洞電場の位相も安定した。

Figure 9: Stabilities of detuning angles $\Delta \theta$ (left) and cavity phases θ_c (right). (After improvement)

チューナー制御を改善後、再度ビームのエネルギー 安定度を測定した。結果を Fig.10 に示す。大きな変動は 見られなくなり、安定度は 0.003% rms であった。3 GeV ERL への要求性能はほぼ満足していると考えている。

Figure 10: Stability of beam energy. (After improvement)

5. まとめ

cERLでは、デジタルLLRFシステムの構築し、16bit ADCと16bit DACを有するデジタルFPGAボードを用い て、RFフィードバックとチューナー制御を行っている。各 空洞電場の安定度は、3GeV ERLの要求値(0.01% rms, 0.01°rms)をほぼ満たす結果となった。RF性能を検証す るために、実際にビームのエネルギー安定度を測定した 結果、エネルギーのドリフトが観測された。これは、空洞 の離調によって、ベクターサムをしている2台の入射器超 伝導空洞のエネルギーバランスが変わり、ビームのエネ ルギー変動に影響していることが原因であった。各空洞 電場の変動を抑えるために、周波数フィードバックのゲイ ンを上げてチューナー制御を改善した結果、各空洞電 場が安定し、最終的に0.003% rmsのエネルギー安定度 が得られた。長時間安定度については、温度について は対策を行ってきたものの、湿度が位相ドリフトに大きく 影響していることが分かったため[4]、湿度への対策も今 後行っていきたいと考えている。

参考文献

- [1] 坂中章悟,他,"コンパクトERLにおけるビーム電流約 1mA の運転", WEOM15, these proceedings.
- [2] T. Miura *et al.*, "Performance of RF System for compact ERL Injector in KEK", Proceedings of ERL2013, Novosibirsk, Russia, 2013, pp.58-61.
- [3] Y. Yano *et al.*, "KEKB入射器のマスターオシレーター", Proceedings of the 28th Linear Accelerator Meeting in Japan, TP15, 2003.
- [4] 荒川大,他,"cERLにおける高周波計測系の振幅・位相の 変動", MOPO011, these proceedings.
- [5] M. Ryoshi *et al.*, "µTCAプラットブォームによるLLRF制御 ボード", Proceedings of pasj2010, 2010, p667.
- [6] T. Miura et al., "KEK-STF における低電力高周波源の安定性評価", Proceedings of Particle Accelerator Society Meeting 2009, Tokai, 2009, p959.
- [7] F. Qiu *et al.*, "Performance of the Digital LLRF System at the cERL", Proceedings of IPAC2014, Dresden, 2014, p2477.
- [8] K. Enami *et al.*, "Performance evaluation of ERL main LINAC Tuner", Proceedings of IPAC2014, Dresden, Germany, 2014, pp2534–2536.
- [9] 加古永治、"ILC用超伝導空洞の開発"、低温工学 48 巻 8 号、2013, pp.415-425.
- [10] T. Miura *et al.*, "Performance of RF System for compact-ERL Main LINAC at KEK", Proceedings of IPAC2014, Dresden, 2014, pp2450-2452.
- [11] F. Qiu *et al.*, "Performance of the Digital LLRF System at KEK CERL", Proceedings of ERL2015, Stony Brook, NY, 2015, pp.84–87.