# SuperKEKB 入射器コミッショニングの現状(III) PRESENT STATUS OF SuperKEKB INJECTOR LINAC COMMISSIONING (III)

佐藤政則#, A, B), 明本光生 A, B), 荒川大 A), 荒木田是夫 A, B), 飯田直子 A, B), 池田光男 A), 岩瀬広 B, C), 榎本收志 A), 榎本嘉範<sup>(A, B)</sup>. 大沢哲<sup>(A, B)</sup>. 大西幸喜<sup>(A, B)</sup>. 小川雄二郎<sup>(A, B)</sup>. 柿原和久<sup>(A)</sup>. 風間慎吾<sup>(A)</sup>. 梶裕志<sup>(A, B)</sup>. 片桐広明<sup>(A)</sup>. 紙谷琢哉<sup>A, B)</sup>,菊池光男<sup>A, B)</sup>,小磯晴代<sup>A, B)</sup>, Feng Qiu<sup>A, B)</sup>,佐武いつか<sup>A)</sup>,佐藤大輔<sup>A)</sup>, 設楽哲夫<sup>D)</sup>,周翔宇<sup>A, B)</sup>, 白川明広<sup>A)</sup>, 末武聖明<sup>A)</sup>, 杉本寬<sup>A,B)</sup>, 諏訪田剛<sup>A,B)</sup>, 清宮裕史<sup>A)</sup>, 田中窓香<sup>A)</sup>, 多和田正文<sup>A,B)</sup>, 張叡<sup>A)</sup>, 峠暢一<sup>A, B)</sup>, 中尾克巳<sup>A)</sup>, 中島啓光<sup>A)</sup>, 夏井拓也<sup>A, B)</sup>, 肥後寿泰<sup>A, B)</sup>, 福田茂樹<sup>A)</sup>, 船越義裕<sup>A, B)</sup>, 古川和朗<sup>A, B)</sup>, 本間博幸<sup>A)</sup>,松下英樹<sup>A)</sup>,松本修二<sup>A,B)</sup>,松本利広<sup>A,B)</sup>,三浦孝子<sup>A,B)</sup>,三川勝彦<sup>A)</sup>,道園真一郎<sup>A,B)</sup>, 三增俊弘 A, B), 宫原房史 A, B), 森隆志 A, B), 森田昭夫 A, B), 矢野喜治 A, B), 横山和枝 A, B), 吉田光宏 A, B) Masanori Satoh <sup>#, A, B)</sup>, Mitsuo Akemoto<sup>A, B)</sup>, Dai Arakawa<sup>A)</sup>, Yoshio Arakida<sup>A, B)</sup>, Naoko Iida<sup>A, B)</sup>, Mitsuo Ikeda<sup>A)</sup>, Hiroshi Iwase<sup>B, C)</sup>, Atsushi Enomoto<sup>A)</sup>, Yoshinori Enomoto<sup>A, B)</sup>, Satoshi Ohsawa<sup>A, B)</sup>, Yukiyoshi Ohnishi<sup>A, B)</sup>, Yujiro Ogawa<sup>A, B)</sup>, Kazuhisa Kakihara<sup>A)</sup>, Shingo Kazama<sup>A)</sup>, Hiroshi Kaji<sup>A, B)</sup>, Hiroaki Katagiri<sup>A)</sup>, Takuya Kamitani<sup>A, B)</sup>, Mitsuo Kikuchi<sup>A, B)</sup>, Haruyo Koiso<sup>A, B)</sup>, Feng Qiu<sup>A, B)</sup>, Itsuka Satake<sup>A)</sup>, Daisuke Satoh<sup>A)</sup>, Tetsuo Shidara<sup>D)</sup>, Xiangyu Zhou<sup>A, B)</sup>, Akihiro Shirakawa<sup>A)</sup>, Masaaki Suetake<sup>A)</sup>, Hiroshi Sugimoto<sup>A, B)</sup>, Tsuyoshi Suwada<sup>A, B)</sup>, Yuji Seimiya<sup>A)</sup>, Madoka Tanaka<sup>A)</sup>, Masafumi Tawada<sup>A, B)</sup>, Rui Zhang<sup>A)</sup>, Nobukazu Toge<sup>A, B)</sup>, Katsumi Nakao<sup>A)</sup>, Hiromitsu Nakajima<sup>A)</sup>, Takuya Natsui<sup>A, B)</sup>, Toshiyasu Higo<sup>A, B)</sup>, Shigeki Fukuda<sup>A)</sup>, Yoshihiro Funakoshi<sup>A, B)</sup>, Kazuro Furukawa<sup>A, B)</sup>, Hiroyuki Honma<sup>A)</sup>, Hideki Matsushita<sup>A)</sup>, Shuji Matsumoto<sup>A, B)</sup>, Toshihiro Matsumoto<sup>A, B)</sup>, Takako Miura<sup>A, B)</sup>, Katsuhiko Mikawa<sup>A)</sup>, Shinichiro Michizono<sup>A, B)</sup>, Toshihiro Mimashi<sup>A, B)</sup>, Fusashi Miyahara<sup>A, B)</sup>, Takashi Mori<sup>A, B)</sup>, Akio Morita<sup>A, B)</sup>, Yoshiharu Yano<sup>A, B)</sup>, Kazue Yokoyama<sup>A, B)</sup>, and Mitsuhiro Yoshida<sup>A, B)</sup> <sup>A)</sup> High Energy Accelerator Organization (KEK), Accelerator Laboratory <sup>B)</sup> The Graduate University for Advanced Studies (SOKENDAI), Department of Accelerator Science <sup>C)</sup> KEK, Radiation Science Center

<sup>D)</sup> KEK, Research Administration Department

## Abstract

SuperKEKB Phase I beam commissioning has been conducted from February to June 2016. The injector linac has successfully delivered the electron and positron beams to the SuperKEKB main ring without any significant troubles. The linac beam studies and subsystem developments are also going on together with the daily beam injection to both rings of the SuperKEKB and two light sources. We obtain an enough quality beam for Phase I commissioning with a thermionic electron gun. The beam injection to HER has been successfully carried out by using a photocathode rf electron gun during 10 days. In addition, about 40% of the present beam position monitor readout systems are replaced by the newly developed high precision ones based on the VME cards. Moreover, the pulsed quadrupole magnet is successfully tested with the electron beam for the simultaneous top-up injection. These results are the significant milestones toward Phase II and Phase III commissioning. In this paper, we report the operational results of Phase I beam commissioning. In addition, the commissioning plans of Phase II and Phase III are also described.

# 1. はじめに

KEKB加速器は、設計値を上回るピークルミノシティを 達成するなど種々の成果をもたらし、2010年6月、成功 裏に終了した。その間KEKB入射器は、異なるエネル ギーおよび電荷量のビームを、4つの蓄積リングである KEKB電子(HER)、陽電子(LER)、PF、およびPF-AR に安定供給することに成功した。2010年4月には、20ミ リ秒ごとに低電力RF位相を高速制御し、KEKBHER、 LER、PFへの3リング同時トップアップ入射を実現した。 同時トップアップ入射の実現により、KEKBおよびPFリ ングの蓄積電流値安定性は、それぞれ、0.05%および 0.01%を達成した[1]。

さらなる高ルミノシティを目指した SuperKEKB 計画に向けて、KEKB 加速器運転の終盤より、入射器は種々の



Figure 1: Schematic layout of the SuperKEKB injector linac. Two straight beam lines with the length of 100 m and 500 m, respectively, are connected by the 180 degree bending beam line (J-ARC).

<sup>#</sup> masanori.satoh@kek.jp

| Project                                         | KEKB***                   |         | SuperKEKB***<br>(Phase I) |          | SuperKEKB <sup>****</sup><br>(Phase II) |         | SuperKEKB <sup>****</sup><br>(Phase III) |         |
|-------------------------------------------------|---------------------------|---------|---------------------------|----------|-----------------------------------------|---------|------------------------------------------|---------|
| Beam                                            | e-                        | e+      | e-                        | e+       | e-                                      | e+      | e-                                       | e+      |
| Beam energy (GeV)                               | 8                         | 3.5     | 7                         | 4        | 7                                       | 4       | 7                                        | 4       |
| Bunch charge (nC)                               | 1                         | 1 (10*) | 1                         | 0.4 (8*) | 2                                       | 2 (10*) | 5                                        | 4 (10*) |
| Normalized vertical<br>emittance<br>(mm·mrad)   | 310                       | 1400    | 300<br>130**              | 1200     | 20                                      | 20      | 20                                       | 20      |
| Normalized<br>horizontal emittance<br>(mm·mrad) |                           |         | 160<br>200**              | 1000     | 50                                      | 100     | 50                                       | 100     |
| Energy spread (%)                               | 0.05                      | 0.125   | 0.5                       | 0.5      | 0.5                                     | 0.1     | 0.1                                      | 0.1     |
| Bunch length (mm)                               | 1.3                       | 2.6     | 1.3                       | 2.6      | 1.3                                     | 0.7     | 1.3                                      | 0.7     |
| # of bunch                                      | 2                         |         | 2                         |          | 2                                       |         |                                          |         |
| Maximum beam repetition (Hz)                    | 50                        |         | 25                        |          | 50                                      |         |                                          |         |
| Top up injection                                | 3 rings (HER,<br>LER, PF) |         | n/a                       |          | 5 rings (HER, LER, DR, PF, PF-<br>AR)   |         |                                          |         |

Table 1: Main Parameters of KEKB and SuperKEKB Injector Linac

\*: Primary electron beam for positron production.

\*\*: Results with the photocathode rf electron gun.

\*\*\*: Achieved values.

\*\*\*\*: Design values.

アップグレードを進めてきた。Figure 1 に、全長 600 m で ある入射器のレイアウトを示す。入射器は、約 100 m およ び約 500 m の直線部が J-ARC と呼ばれる 180 度偏向部 で接続されたビームラインから構成される。J-ARC 部で のビームエネルギーは、KEKB 運転時の 1.7 GeV から 1.5 GeV に変更された。これにより、100 m 直線部である A セクタおよび B セクタにおけるクライストロン予備機を 確保し、ビーム運転の可用性を高めている。KEKB およ び SuperKEKB ビーム運転における主要なパラメタを、 Table 1 に示した。

SuperKEKB のビームコミッショニングは、大きく三つの ステージに分類される。本年2月から6月までおこなっ たPhase Iコミッショニングでは、主リングの真空焼きだし、 基本的な機器の動作確認、および低エミッタンススタディ などがおこなわれた[2-6]。そのため、要求されるビーム のバンチ電荷量およびエミッタンスは、KEKB 運転時に 達成したものとほぼ同等である。

来年秋以降に予定されている Phase II コミッショニング では、一部を除く Belle II 検出器がインストールされ、物 理実験を開始する。また、バンチ電荷量は Phase I の 2 倍である 2 nC を目指し、同時に垂直方向ビームエミッタ ンスは 20 mm·mrad 以下を目標としている。 Phase II 以降 は、陽電子ダンピングリング (DR)の運転を開始するとと もに、二つの放射光リングを含めた 5 リング同時トップ アップ入射がおこなわれる。これまで KEKB HER と一部 共通であった PF-AR のビーム輸送路(BT)は、トップアッ プ入射を目指して専用 BT 用トンネルを建設し、現在、 ビームラインを構築中である[7]。また、電子ビームは DR を用いない入射をおこなうため、エミッタンス増大を抑制 するための精密ビーム制御が重要な技術課題となる。そ の後の Phase III では、全ての Belle II 検出器がインス トールされ、設計ピークルミノシティである 8x10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup> を目指したビームコミッショニングを開始する。

大バンチ電荷量の陽電子生成に向けて、フラックスコ ンセントレータ(FC)、ブリッジコイル、および大口径 S バ ンド加速管を製作、設置した。現在、陽電子収集性能向 上を目指した新型 FC の開発が進められている[8]。陽電 子源設置場所の移設にともない、放射線シールドの増 強もおこなった [9]。

低エミッタンス電子源として、IrsCe 光陰極を用いた RF 電子銃を採用した[10]。また、ビーム加速および集束を 同時かつ効率的におこなうために、擬似進行波型サイド カップル空洞と命名した新奇空洞を開発し、安定な運用 を実現した[11]。RF 電子銃からのビーム安定性は、レー ザーシステムの安定性に依存するため、Phase II コミッ ショニングに向けた、さらなるレーザーシステムの改善が 進められている[12]。

# 2. 入射器アップグレード

## 2.1 概要

SuperKEKB 主リング入射に向けて、2013 年秋、入

射器のビームコミッショニングを開始した。入射器 コミッショニングの初期段階においては、主に、大 バンチ電荷量電子生成を目指した RF 電子銃用レー ザー開発に専念した。すでに、RF 電子銃から 5.6 nC ビームの生成に成功した。これは、SuperKEKB Phase III 運転の最終段階に要求されている電荷量で ある。計画当初においては、電子および陽電子入射 のいずれも RF 電子銃を用いておこなう予定であっ た。しかしながら、陽電子ビーム生成に要求される 10 nC の電子ビームを、RF 電子銃を用いて安定供給 することは、現時点では困難であると判断した。

放射線施設検査および SuperKEKB 主リング Phase I 運転用陽電子ビーム生成のため、すでに撤去され た熱電子銃を基盤とした入射部システムの再構築を 2015 年 4 月におこない、5 月に無事コミッショニン グを終了した。この新しいビームラインは、通常の 入射器ビームラインレベルである 1200 mm よりも高 い 1950 mm の位置に設置した。これは、RF 電子銃 からのビームには低エミッタンスが要求されている ことに対して、熱電子銃からのビームは陽電子生成 用 1 次電子ビームとして使用するため、低エミッタ ンスは不要であるという考えに基づくものである。

ビームラインの概略図を、Fig. 2 に示した。熱電 子銃ビームラインは、114 MHz および 571 MHz のサ ブハーモニックバンチャ、プレバンチャ、およびバ ンチャを通過した後、S-band の 2 m 加速管 2 本を通 り、2 台の 24 度垂直偏向電磁石を用いて 1200 mm ビームラインと合流している。電磁石などは極力予 備品を用いることにより、コストおよび工期を抑え ることができた。来年秋からの同時トップアップ入 射に向けて、2 台目の垂直偏向電磁石は、DC からパ ルス駆動のものへ変更する予定である。

#### 2.2 低エミッタンス保存

SuperKEKB 主リング Phase II コミッショニング以降の ビーム運転においては、低エミッタンスビーム入射が不 可欠となる。これは、極めて高いルミノシティを達成する ためのナノビーム運転実現に向けて、不可避かつ挑戦 的技術課題である。Phase IIコミッショニングにおいて、電 子ビームは、垂直方向規格化エミッタンス20 mm·mrad か



Figure 2: Layout of the injector beam line. The injector part was reconfigured for the reinstallation of thermionic electron gun in May of 2015. The beam line level of thermionic electron gun is changed from 1200 mm to 1950 mm. Two bends with the bending angle of 24 degrees are used for merging with the rf gun beam line. The quadrupole triplet is used for closing the vertical dispersion.

つ 2 nC バンチ電荷量ビームが要求され、Phase III では 同様なエミッタンスを持つ 5 nC バンチ電荷量ビームが必 要とされている。陽電子ビームに関しても要求されるパラ メタはほぼ同等である。

Phase II コミッショニングから、低エミッタンスビーム実 現のため、陽電子 DR が稼働する。一方、電子ビームで は DR を用いることなく、光陰極 RF 電子銃および精密 ビーム制御による低エミッタンスビームの実現を目指して いる。そのため、入射器におけるウェイク場に起因するエ ミッタンス増大を抑制し、低エミッタンス保存をおこなうた めには、加速管および電磁石の精密アライメントが必須 である[13]。2011 年の東日本大震災において甚大な被 害を被った入射器ビームラインは、レーザフォトダイオー ドによる加速管架台アライメントおよびレーザートラッカに よる機器アライメントが精力的におこなわれてきた。最近 のアライメント計測結果より、入射器トンネル床面が時間 的に変動することがわかってきた[14、15]。このため、高 精度ビーム位置モニタ(BPM)による精密ビーム制御は もとより[16]、動的駆動型架台の開発および試験も平行 して進めている[17]。

# 3. ビームコミッショニング

#### 3.1 Phase I ビームコミッショニング

Phase I コミッショニングは、2016 年 1 月 25 日に開始 し、2 月 1 日より BT のビーム調整を開始した。Phase I コ ミッショニングの主な目的は、主リング真空ダクトの焼きだ し、新規導入機器の動作試験、および低エミッタンス ビーム実現のための光学調整スタディなどである。運転 開始当初は、100 mA 以下の低蓄積電流値状態におい て機器保護装置の動作試験をおこなった。その後も、真 空圧力および各種機器温度の推移を慎重に監視しつつ、 徐々に蓄積電流値を増加させた。最終的な LER および HER における蓄積電流値は、それぞれ、1010 mA およ び 870 mA にまで到達した。Phase I コミッショニングは、 当初の目標を概ね達成し、6 月 28 日朝に終了した。主リ ングコミッショニングに関する詳細については、他稿を参 照されたい[3]。

Phase I においては、LER および HER 入射ともに、熱 電子銃を用いて開始した。Figure 3 は、典型的な HER 入



Figure 3: Plots of the electron beam orbit and bunch charge from the thermionic electron gun for the HER injection. The plots show the horizontal (top), vertical (middle) beam positions in the units of mm, and bunch charge in the unit of nC at each BPM location.



Figure 4: Electron bunch length with the bunch charge of 1 nC for the HER injection.



Figure 5: Plots of the electron and positron beam orbit, and bunch charge from the thermionic electron gun for the LER injection. The plots show the horizontal (top), vertical (middle) beam positions in the units of mm, and bunch charge in the unit of nC at each BPM location.



Figure 6: Electron bunch length with the bunch charge of 10 nC for the positron production.

射用電子ビームの水平・垂直方向軌道、およびバンチ 電荷量をプロットしたものである。入射器最上流から BT 終端までの各 BPM 位置における情報を示している。電 子銃から入射器終端までは、1 nC のバンチ電荷量がほ ぼ減少することなく輸送されていることが見て取れる。BT においては若干のビームロスが見られ、BT 終端では 0.7 nC 程度の電子ビームを輸送することに成功している。 Figure 4 は、ストリークカメラによる 1 nC 電子ビームのバ ンチ長測定結果の一例であり、KEKB 運転時と同等であ る約 8 ps (FWHM)のバンチ長を達成した。

Figure 5 は、陽電子ビームの軌道およびバンチ電荷量 をプロットしたものである。1 次電子ビームは、熱電子銃 直後では約 10 nC が生成され、陽電子生成標的上まで 約7nCが輸送されている。生成された陽電子ビームは、 入射器終端およびBT終端において、それぞれ、約0.7 nCおよび0.4 nC程度が輸送されている。入射器内での ビーム通過率は、DRを用いた陽電子ビームの低エミッタ ンス化により改善すると考えている。Figure 6は、10 nC電 子ビームのバンチ長測定結果例を示す。1 nC電子の場 合と同様、KEKB運転時と同等である15 ps (FWHM)の バンチ長が得られた。また、Table 1 に示されているとおり、 ビームエミッタンスに関してもKEKB運転時の値をほぼ 再現している。以上の測定結果より、Phase I コミッショニ ングに要求される入射器ビーム性能は達成されたといえ る。また、Phase I コミッショニングでは、運転経費節減の ため最大ビーム繰り返しを25 Hz に制限してきたが、 Phase II 以降では 50 Hz での運転をおこなう予定である。

## 3.2 RF 電子銃による HER 入射

既に述べたとおり、Phase IIコミッショニング以降においては低エミッタンスビームの実現が最大の課題となる。 RF 電子銃によるHER入射試験は、5月31日に初めて成功した。さらに、6月8日から18日までの10日間、RF 電子銃を用いた HER への連続ビーム入射に成功した。 Figure 7 および Fig. 8 に、それぞれ、RF 電子銃を用いた 場合のビーム軌道・電荷量および入射率を示した。いずれも、熱電子銃からのビームと同等の結果を示している。



Figure 7: Plots of the electron beam orbit and bunch charge from the photocathode rf electron gun. The plots show the horizontal (top), vertical (middle) beam positions in the units of mm, and bunch charge in the unit of nC at each BPM location.



Figure 8: Beam injection rate of the thermionic electron gun and the rf electron gun to HER (blue dot). The red dot indicates the beam injection rate to LER from the thermionic electron gun.



Figure 9: Bunch charge stability from the photocathode rf electron gun during around 10 minutes.



Figure 10: Vertical beam position stability from the photocathode rf electron gun during around 10 minutes.

次に、RF 電子銃を用いた場合のビーム安定性に関す る測定結果を示す。Figure 9 に、バンチ電荷量安定性を 示した。また、Fig. 10 に、垂直方向のビーム位置安定性 をプロットした。これらの棒グラフは、電子銃直後から С セクタ先頭までの BPM 位置における約 10 分間の測定 結果から算出した標準偏差を示している。また、それぞ れの BPM 位置において、異なるビーム繰り返しに対す る測定結果も示している。これらの結果より、バンチ電荷 量およびビーム位置ともに、ビーム繰り返しに依存した安 定度の差異は見られない。また、バンチ電荷量安定性は 4%程度であり、熱電子銃ビームの安定度 2%とほぼ同等 なレベルに到達している。ビーム位置安定度に関しては、 概ね 0.3 mm 以下であるが、J-ARC 部で 0.4 mm 程度を 示す箇所が見られる。レーザー安定化によるビーム安定 性の改善を進めるとともに、ビームジッタ源を探索するた めのビームスタディを計画している。

RF 電子銃による HER 入射を順調に進めていたが、6 月 18 日の正午頃、入射器クライストロンギャラリに設置し ている空調機水漏れの余波を受け、RF 電子銃用レー ザー発信器が停止した。その後、他のスタディを優先されるため RF 電子銃による HER 入射は見送られたが、連続入射を達成したことにより Phase II 以降での本格運用に向けた大きな一歩となった。

#### 3.3 Phase II および Phase III ビームコミッショニング

SuperKEKB 主リングの Phase I コミッショニング運転は 6月28日朝9時に終了し、引き続き入射器単独ビーム スタディが7月1日朝9時までおこなわれた。Phase II お よび Phase III ビームコミッショニングは、それぞれ、2017 年秋および 2018 年秋以降に開始される予定である。 Phase II ビームコミッショニング開始までの約一年間は、 RF 電子銃の性能上に関する開発研究および低エミッタ ンス保存技術に関するスタディに注力する予定である。 Phase II および Phase III 運転においては、それぞれ、2 nCおよび5nCバンチ電荷量における低エミッタンスビー ム輸送が求められている。エミッタンス保存を目的とした 精密ビーム位置制御を目指して、新たな VME カード型 高精度 BPM 読み出しシステムを開発した。Phase I コミッ ショニング期間中、オシロスコープを基盤とした既存シス テムの約半数を新システムへ置き換えることができた。ま た、これまでのアライメント測定の結果より、トンネル内の 床面が時間と共に変動していることが判明している。対 抗策として、加速管および電磁石架台の動的駆動機構 を開発し、試験を進めている。

陽電子生成部に関しては、最終目標である 12 kA 運転を目指した FC を製作中である。これは、ヘッド部に加 工硬化処理を施し耐力を増強したものであり、来春頃、 ビームラインへ設置する予定である。また、同時トップ アップ入射に必須であるパルス四重極電磁石および電 源の開発、ならびに基礎的なビーム試験も完了した。現 在、パルスステアリング電磁石電源の開発が大詰めを迎 えている。これらのパルス電磁石および電源は、来夏期 保守期間中に、3 セクタから 5 セクタのビームラインに設 置する。また、精密なビームエミッタンス計測を目指した 新規ビームプロファイルモニタの開発[18]および低エミッ タンス大電荷量ビーム運転時に不可欠となるビームロス モニタ[19]の開発も進められている。

## 4. まとめと今後の課題

本年2月より開始した、約5ヶ月間の SuperKEKB Phase I コミッショニング運転は、大きな障害もなく 無事に終了した。当初、HER および LER 共に A1 ユ ニットに際設置した熱電子銃を用いてビーム入射を 開始した。6月8日から18日の10日間、RF 電子銃 を用いた HER への連続入射に成功した。来秋以降に 予定されている Phase II コミッショニング、ひいて は Phase III コミッショニングに向けて、今秋の入射 器単独スタディにおいて、低エミッタンス保存など の運転技術開発を進めていく。それとともに、RF 電 子銃の大電荷量かつ低エミッタンス化、FC、および パルス電磁石電源などのハードウェア開発も進めて いく予定である。

## 参考文献

- [1] Mitsuo Akemoto et al., Prog. Theor. Exp. Phys. (2013) 03A002.
- [2] T. Kamitani et al., "SuperKEKB Phase1 (Injector+Ring) Status Report", in these proceedings.
- [3] Y. Funakoshi et al., "Phase 1 beam commissioning of SuperKEKB", in these proceedings.
- [4] K. Yokoyama et al., "Present Status of the KEK Electron/Positron Injector Linac", in these proceedings.
- [5] K. Furukawa et al., "Injection operation into multiple storage rings at KEK Electron/Positron 7-GeV Injector Linac", in these proceedings.
- [6] H. Kaji et al., "Injection Control System for the SuperKEKB Phase-I Operation", in these proceedings.
- [7] S. Nagahashi et al., "The construction of the direct beam transport line for the PF-AR", in these proceedings.
- [8] Y. Enomoto et al., "Development of a flux concentrator for SuperKEKB", in these proceedings.
- [9] S. Matsumoto et al., "Radiation Shield for the Positron Target of KEKB Injector LINAC", in these proceedings.
- [10] D. Satoh et al., "A preliminary study on quantum efficiency enhancement of iridium cerium photocathodes for SuperKEKB injector linac", in these proceedings.
- [11] T. Natsui et al., "Commissioning of RF Gun for SuperKEKB", in these proceedings.
- [12] R. Zhang et al., "Improvements of Stable and High Output Energy Laser System for RF-Gun at SuperKEKB Injector", in these proceedings.
- [13] Y. Seimiya et al., "EMITTANCE GROWTH BY MISALIGNMENTS AND JITTERS IN SUPERKEKB INJECTOR LINAC", in these proceedings.
- [14] T. Suwada et al., "Dynamical Observation of Slow Tunnel Floor Motion at the KEKB Injector Linac (II)", in these proceedings.
- [15] M. Tanaka et al., "Measurement of floor movement in the KEKB injector LINAC tunnel (3)", in these proceedings.
- [16] R. Ichimiya et al., in Proceedings of IBIC2013, Shanghai, China, September 16-19, pp.698-701 (2013).
- [17] S. Ushimoto et al., "Motor-driven Control of Support Structure for Pulse Magnets", in these proceedings.
- [18] F. Miyahara et al., "Performance test of scintillating screens for high current density electron beam", in these proceedings.
- [19] Y. Yano et al., "OPTICAL FIBER BEAM LOSS MONITOR AND WIRE SCANNER-2", in these proceedings.