

THPH025: 電磁石架台のモーター制御1 **MOTOR CONTRELL OF MAGNET SUPPORT 1**

榎本嘉範^{A)}、佐々木信哉^{A)}、牛本信二^{B)}

はじめに

KEK 電子陽電子入射器(以下入射器)では、SuperKEKB で要求さ れる低エミッタンス入射ビームを実現するために、様々な取り組み を行っている。中でも 2017 年に PF, PF-AR, SuperKEKB LER/HER の 4リング同時入射を目的として入射器後半のマグネットの大部分を DC マグネットからパルスマグネットへ置き換えたが、この際新し いマグネットに合わせて架台も一新した。これまでの測定から入射 器の床面は場所によっては年間1 mm以上変動することがわかっ ている。一方で、SuprKEKB で必要とされる入射ビームのエミッタ ンスを維持するためには、マグネット等の主要コンポーネントに許 されるミスアライメントはローカル (概ね 10 m 前後) で $\sigma = 0.1$ mm, グローバル(入射器全長約 600 m)で $\sigma = 0.3$ mm 以内にア ライメントする必要があると考えられている。この精度を維持する ために、ステッピングモータ制御により5軸と手動により1軸の 位置調整が可能な機構を備えた新たな架台を開発した。

にがし機構

軸が2つ以上ある剛体を 回転させる場合、ねじれ を吸収するための構造が 必要になる。Figure 3 に ロール及びピッチ方向 の、Fig.4にヨー方向の にがし機構の構造を示 す。またビームダクトは ベローズを介して両サイ ドのコンポーネントと接 続されているが、ロール 方向の動きは吸収できな いため、Fig.5に示すよ うに、サポート側にすべ り機構を設けている。

構造および諸元

Figure 3: Adjustment mechanism for roll and pitch motion.

Figure 1: Views of magnet support with magnets.

	Table 1: Specifications of Screw Jack			Table 2: Specifications of Motor Unit		
		S1 - S4	S5, S6		M1 - M4	M5, M6
	manufacturer	NIPPON gear	NIPPON gear	manufacturer	Oriental motor	Oriental motor
	type	J2GL	JSGL	type	PKP264D14A2	PKP246D15A
	screw lead	8 mm	4 mm	phase	2	2
	Worm reduction ratio	24	24	reduction ratio	36	1
	travel per input rotation	0 33 mm	0 17 mm	reduction ratio	50	1

性能評価

of the duct support.

ベアリング

ダクト抑え —

Figure 4: Adjustment mechanism for yaw motion.

Figure 6: Offline test results.

まとめ

Figure 6 にリニアゲージ(ミツトヨ

Figure 1 に製作した架台の 3 面 図ど鳥瞰図を Figure 2 に設置 した際の写真をしめす。また Table 1 に使用したスクリュー ジャッキの諸元を、Table 2 に 使用したモーターユニットの諸 元をそれぞれ示す。X,Y 方向へ の平行移動、X,Y,Z 軸周りの回 転は各スクリュージャッキ S1 ~ S6を同じ方向あるいは反対 方向へ動かすことにより制御す

0.05 deg

Figure 2: A photo of magnet support with magnets.

ることができる。Z方向への移動はリモートでは動かせないが押し ねじによりローカルには調整可能となっている。

LGK-0110, 分解能 0.1 µm) を用い たオフラインでの性能評価試験の結 果を示す。測定結果から構造的には 1 µm 以下の精度で位置決めできる ことがわかった。また Fig. 7 にビー ムを用いた測定結果を示す。

Figure 7: Test results with beam.

モーター制御により、z方向並進以外の5軸が制御可能な電磁石 架台を制作し、性能評価を行った。高精度リニアゲージを用いた 測定から、機構的には1µm以下での位置決め精度を有しており、 各軸独立に制御できることを確認した。同様の架台は13セッ ト入射器に設置されており、動作試験も完了している。