線形加速器用電流モニターにおける信号伝送解析とノイズ低減技術 SIGNAL TRANSMISSION ANALYSIS AND NOISE REDUCTION TECHNIQUE FOR CURRENT MONITOR IN LINEAR ACCELERATORS

諏訪田剛*

Tsuyoshi Suwada*

Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), SOKENDAI (Department of Accelerator Science, The Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki, 305-0801 Japan

Abstract

A signal transmission and its characteristics of a beam-current monitor (CM) have been investigated for long-pulsed electron beams with a pulse width of $\sim 1 \ \mu$ s. The monitor is based on a conventional current transformer, which comprises an induction coil wound around a ferrite core. Three CMs of this type are used in the compact electron linac of the Slow Positron Facility (SPF) of the Institute of Materials and Structure Science (IMSS) at KEK. It was found that only the signal measured by one of these CMs was very noisy, and however, the signals by the other CMs seemed to be normal. This result gave me strong motivation to investigate this work, because it seems that there are no differences among these CMs. After experimental tests and simulations based on balanced and unbalanced circuit theory, it was found that it was important where the grounded points should be located in the signal transmission line of CM. The generation and transmission mechanism of the noise signal from CM and its suppression technique are discussed from a physical point of view based on a signal transmission model.

1. はじめに

電子線形加速器における長パルスビームの電流計測 (パルス幅 $\gtrsim 1 \mu s$)では、一般的にフェライトコアーにコ イルを多数回巻いた電流モニターが用いられることが多 い. KEK 物構研では、小型の電子線形加速器を利用した 低速陽電子施設を共同利用施設として運営している.低 速陽電子施設では電子を標的に照射し低速陽電子(エネ ルギー可変/最大 35keV)を生成し、固体表面物性や原子 分子物理学の研究が精力的に行われている [1].

この加速器では、既存の CM を2台、新規に製作した 同様なモニター1台、合計3台を利用してビーム電流を 非破壊で計測している.新規のものは既存のものを参考 にして製作したつもりであった.しかしながら、ノイズ 抑制という観点からすると既存モニターは問題なく利用 できていたにも関わらず、新規モニターはノイズの影響 を大きく受けることになった.ノイズ低減技術の一つと して有効なチョークコイルを用いたノイズ対策を何度も 試みたがことごとく失敗した.ここでノイズ生成の原理 に立ち戻って考える必要性に迫られた.

線形加速器においてノイズは昔から厄介な問題を提供 している.特に高電力クライストロンや高速キッカー近 くのビーム診断では、ノイズを完全な形で避けることは 難しい.CMを例に取り伝送線路の基本に立ち戻り、信号 伝送とノイズ生成の原理を解析したところ、既存と新規 モニターの間にはグランド位置に本質的な違いがあり、 この違いが信号伝送に大きな影響を与え、結果として信 号歪みやノイズ生成の原因になっていることが判明した. 本解析を通して、Gnd.の取り方に関する幾つかの注意 事項を指摘すると共にノイズ生成及びその抑制の原理に ついてまとめる.

2. ビーム電流計測

2.1 基本原理

CM を用いたビーム電流計測の原理を図 1 に示す. ビームが真空パイプに設けたセラミックギャップを通過 するとき、ギャップから漏洩する自己場(磁場)をコイル で検出する.ビーム電流に比例した誘導電流(*I*₀)を終端 抵抗(*R*₀)により電圧(*V*₀)に変換しその振幅を計測すれ ばビーム電流に焼き直すことができる.

Figure 1: Signal pickup principle in a beam-current measurement with a CM.

ビームとコイルを 1:N(N:コイル巻数) のトランスと して扱えば、CM は電圧増幅器として作用する. 電圧出 力は同軸ケーブルにより伝送され、市販のオシロスコー プを用いれば信号波形と電圧振幅を容易に計測すること ができる. 信号の電圧振幅又は面積の計測から事前計測 された校正係数を乗算すれば電流値に変換できる. これ が CM による電流計測の基本原理である.

^{*} tsuyoshi.suwada@kek.jp

2.2 機械的構造

図 2 は入射器における CM の機械的構造を示し、ビーム側面から見た断面図になっている. CM は電磁シールド用ケース (Al 製)の内部に二分割されたフェライトコアー(トーキン製 12001H)が組み込まれている. その上半分には導線を 25 回巻き、導線端は BNC の中心導体と Gnd. に接続される. BNC はポリイミドフィルム (赤色)を挟んで電気的にケースから浮かせる構造になっている. コアーの下半分には 1 ターンコイル (導線)に抵抗50Ω を直列接続し BNC に接続している. これは電流校正のためのテストパルス入力となる.

二分割コアーは上下からバネで強く押され、固定ジグ を使って、その境界面は密着される構造になっており、 計測時の磁場漏洩を抑制している. CM は真空を破るこ となくセラミックギャップに装着され、分割部はコアー に間隙が生じないようにケースに開けた4ヶ所のボルト でケースが真空パイプに固定される. テスト入力にパル スが入力すると、1:N トランスを通して終端抵抗により 電圧信号が BNC から出力される.

Figure 2: Mechanical drawing of the CM in side view.

3. 信号伝送解析のための等価回路

3.1 等価回路

図 3 に信号伝送解析のための等価回路を模式的に示 す. 図 3 (a) に計測システム全体の等価回路を示す. ビー ムを 1 ターンコイルと見なし、1:N トランスを介してそ の出力を同軸ケーブルで伝送し、信号波形がオシロで計 測される. 図 3 (b) は信号伝送解析のための等価回路を示 す. トランスを介した出力を周波数依存性を考慮した電 圧信号源として扱い、これを二次コイル側に取り入れた. 信号源出力 (V_G) はインダクタンス特性を考慮し、フェラ イトコアーの透磁率に応じた周波数依存性を適切に取り 入れた ($V_G(\omega)=j\omega L_1(\omega)I_0$). この置き換えによりトラン ス特性を考慮した厳密なビーム応答性は失われるが、伝 送信号の周波数応答を議論する限り一般性を失うことは ない. 信号源で生成された信号は 15m の同軸ケーブルで 伝送され、オシロ内蔵の 50Ω を通して波形計測される.

オシロには電源 (単相 AC100 V) が接続されるだけで、 Gnd. 線は積極的には接続されていない. しかし、電源ラ

Figure 3: (*a*) Schematic equivalent circuit in a beamcurrent measurement with a CM, and (*b*) equivalent circuit in the signal transmission analysis with a signal generator.

インの片側を通して電源用分電盤の Gnd.(PS Gnd.) に 接続されることになるので、オシロの入力端子とシャー シの Gnd. は自動的に PS Gnd. に短絡することになる. 従って、入力信号の電流の一部は、同軸ケーブルではな く PS Gnd. を通して帰還することになるので注意が必 要である.

3.2 伝送線路における Gnd. の取り方

図4に図3をさらに進めた等価回路を示し、信号源側で Gnd. に短絡させない場合と短絡させた場合の等価回路を示す.ここで言う Gnd. とは加速器のグランドを表し、PS Gnd. と区別するため、特に Acc Gnd. と記す.

Figure 4: Detailed equivalent circuit taking into account another grounded point (*Acc. Gnd.*) on the signal generator side. There are two connection states for it (see text for details)

従って、CM に対するグランドの取り方として、 Acc Gnd. を接続しない状態 (Acc Gnd. 無/off-state)と 接続した状態 (Acc Gnd. 有/on-state)が存在することに なる. 繰り返すと、前者は加速器本体のグランドに対し 浮いている状態を示し、後者はこれに対し導通している 状態を示す. 前者が新規製作した CM に相当し、後者が 既存の CM に相当する. 新規 CM では、ポリイミド絶縁 は出力 BNC の Gnd. をケース (Acc Gnd.)から浮かせる ために、固定用ネジとして金属の代わりにセラミックネ ジを積極的に用いた. 他方、既存 CM ではポリイミド絶 縁があるにも関わらず、よく見ると金属ネジが用いられ ていた. このように既存と新規 CM 間には、信号源側の Acc Gnd. の扱いに違いがあることが判明した.

4. 信号伝送解析のための準備

4.1 等価回路

図5に信号伝送解析のための等価回路を示す.

Figure 5: Equivalent-circuit model with lumped constant circuit elements in the signal-transmission-line analysis taking into account another grounded line (*Gnd. Line*). Two different propagation modes are also schematically drawn (see text for details).

図 5 は図 4 に対応して左側に信号源 (線路位置基準 点 z = 0)を配置し、同軸ケーブル (長さ l)による信号 伝送を経て右側の負荷 (線路位置 z = l)に入力する. 信 号源 (e_1, e_2) と信号源の内部負荷 (Z_1, Z_2) 、外部負荷 (Z_4, Z_5) と Gnd. Line インピーダンス (Z_3, Z_6) は解析 の拡張性と対称性を考慮し集中定数として配置した. 回 路の対称性から信号源と外部負荷側の各中点から Gnd. が引き出される. これらは解析のための基本パラメータ となる.

図 4 との対応を考えると、これらのパラメータは $e_1=V_G(\omega)\neq 0, e_2=0, Z_1=Z_2=0, Z_3=Z_6=0, Z_4=50\Omega, Z_5=0$ である.これらのパラメータを計算条件 Case 1 と置く と図 4 の Acc Gnd. 有の場合に対応する.この条件で は、基本となる伝送特性が得られる.計算条件 Case 2、 $Z_3=+\infty$ (他は Case 1 に同じ) と置くと図 4 の Acc Gnd. 無の場合に対応する.

ここで、注意したいことは PS Gnd. と Acc Gnd. との 関係である. 加速器本体は積極的には Gnd. 接続されて いない. しかし、CM とオシロ間のグランドは同軸ケーブ ルによる結合とは別に、加速器とクライストロン電源間 のグランド (Kly Gnd.) を通して Acc Gnd. と PS Gnd. が結合されることになる. 実際の経路は、CM ケース → 真空パイプ → 加速管 → 導波管 → クライストロン → 電 源 → 分電盤 Gnd. となる. この結合が Gnd. Line を生 成すると考える. 従って、CM ケースが BNC Gnd. に短 絡していれば、Acc Gnd. と PS Gnd. は同軸ケーブルを 通して Gnd. が直接短絡されると同時に、Gnd. Line と いう別の経路でも結合することになる.

ー般的に、直接短絡のインピーダンスは *Gnd. Line* のそれに比べ充分小さく、同軸ケーブルの *Line* 2 が 信号電流の帰還路になると考えてよい. このような場 合、信号源側と外部負荷側の *Gnd.*間に電位差は生じな い. しかし、CM ケースが BNC *Gnd.*に対し浮いてい る場合 (*Acc Gnd.* 無)、もしその経路上に何らかのイン ピーダンスが存在すれば ($Z_3 \neq 0, Z_6 \neq 0$)、*PS Gnd.* と Acc Gnd. 間の Gnd. Line 結合により電位差が生じ ることになる. Case 3 はこのような場合を想定したも ので、Gnd. Line 上に誘導性 ($L = 0.33 \mu$ H) と抵抗 性インピーダンス ($R = 15\Omega$)を仮定した. すなわち、 $Z_3=(R + j\omega L)/2$ 、 $Z_6=(R + j\omega L)/2$ の場合を仮定し計 算条件 Case 3(他は Case 1 に同じ) とした. ここで抵抗負 荷はデジボルによる実測に基づくが、インダクタンス負 荷は仮定値とした.

このように図 4 に示す伝送線路は単純な二線路で はあるが、実は図 5 に示すように Gnd. は三番目の線 (Gnd. Line) として別に存在することに注意すべきであ る. ノイズ源としてさらに e_3 が Gnd. Line 上に存在す れば、もはや PS Gnd. と Acc Gnd. は性質のよい Gnd. ではなくなる. このことは三線伝送線路に特有な現象で Gnd. を揺らす原因となり、うまく対処しないとノイズ 生成や信号波形の歪みを引き起こす要因となる. Case 3 の負荷配置を対称性を考慮して $Z_4=Z_5=50\Omega$ とした場合 を計算条件 Case 4 とした. Case 1–4 に対応する信号伝送 特性の計算例は次節に示される.

4.2 平衡不平衡回路における信号伝送

図4に示した等価回路は不平衡回路 (unbalanced circuit) と呼ばれる.一方、平衡回路 (balanced circuit) も 存在し伝送線路において両者は重要な役割を担う.我々 がしばしば利用する不平衡回路では片線が接地されるの で、他線の電位を計測することになる.他方、平衡回路で は信号線が三番目の Gnd. Line に対し浮いているので 必然として三線の伝送線路となる.このような伝送線路 では、二線の電位の和と差からなる2モードの信号が共 存することになる [3].不平衡回路ではディフェレンシャ ルモード(d) が特有であるが、平衡回路ではディフェレ ンシャルモードに加え、特徴的なコモンモード(c) が存 在する.

平衡回路において、片線の電位と電流をそれぞれ V_1 、 I_1 、他線をそれぞれ V_2 、 I_2 とし、cモードの電位と電流 を V_c 、 I_c 、dモードのそれらを V_d 、 I_d とすると、これら はそれぞれ (1) 式と (2) 式で定義される. これらの電位と 電流を模式的に図 5 に例示している. これらの諸量は伝 送線路の線路位置 z に依存する物理量であることに注意 しておく.

$$V_c(z) \equiv (V_1(z) + V_2(z))/2, \ I_c(z) \equiv I_1(z) + I_2(z) \ (1)$$

$$V_d(z) \equiv V_1(z) - V_2(z), \ I_d(z) \equiv (I_1(z) - I_2(z))/2 \ (2)$$

4.3 信号伝送の解析

図6は、平衡不平衡回路における信号伝送の解析を行うために留意しなければならない信号伝送の姿態をまとめたものである.理論的な取り扱いは文献[2]に詳しい. 図は典型的な三種類の信号伝送の姿態に対応し、真中に 負荷が位置しその両側には信号源が置かれる.負荷には PS Gnd.が接続されるので、dモードは計測されるが c モードは計測されないことに注意しておく.

左信号源 (e_{dd}) は主モードである d モードの信号伝送 を表し各図で共通である. すなわち信号源で d モードが 生成され、同軸ケーブルでモードが変わることなく伝送 され、オシロで d モード計測が行われる. 他方、図 6 (a) $の右信号源 <math>(e_{cc})$ では c モードが生成され、同軸ケーブル

Figure 6: Four fundamental propagation schemes for c and d modes in the signal transmission line. (a)–(c) show the different propagation schemes (see text for details).

でモードが変わることなく伝送され、負荷で c モードか ら d モードへの変換が生じ d モード計測が行われる. 図 6 (b) は、右信号源 (e_{dc}) で c モードが生成され信号源で d モードへの変換が生じ、同軸ケーブルで d モードが伝 送され、負荷で d モード計測が行われる. 図 6 (c) は、右 信号源 (e_{cd}) で d モードが生成され信号源で c モードへ の変換が生じ、同軸ケーブルで c モードが伝送され、負 荷で c モードから d モードへの変換が生じ d モード計測 が行われる. 図 6 (c) ではモード変換が 2 回生じるため、 図 6 (a)、(b) に比べより高次項となる. 左信号源による伝 送モードでも同様な高次項が考えられるが、解析では cモードによる高次項を適宜取り入れて計算している.

このように、伝送線路では複数の信号伝送の姿態が存 在するので、 *c* モード生成と伝送を極力抑制しながらか つ波形歪みを抑制した主 *d* モード伝送の実現が肝要とな る. 表1に信号伝送モードの存在姿態をまとめておく.

Table 1: 信号伝送モードの存在姿態

対応図	電源	モード 電源側	モード ケーブル	モード 負荷側
(a)– (c) left	e_{dd}	d	d	d
(a) right	e_{cc}	c	c	$c \to d$
(b) right	e_{dc}	$c \to d$	d	d
(c) right	e_{cd}	$d \rightarrow c$	c	$c \to d$

5. 解析結果

図 7 は、伝送条件 Case 1 の解析結果を示す. 図 7 (a) は出力振幅 (実数成分 [dBV])の周波数特性¹を、図 7 (b) は出力位相 ([deg.]、±180°で定義)の周波数特性を示す (以下同様). この結果は、腹と節が半周期ごとに繰り返さ れる歪みの無い理想的な周波数特性を示す.しかも位相

Figure 7: Analysis results of Case 1. (a) Amplitude and (b) phase spectra as a function of frequency. The red and blue solid lines indicates the results for the d mode and converted c mode, respectively. The cable length is l = 15 m.

歪みも無いので出力の周波数特性は理想的である.しか し、主 d モード(赤線)に対しモード変換により生じた c モード(青線)の大きさは、最大振幅のところでその振幅 差は~6 dB 程度でモード変換の割合は比較的大きい.こ れは、理想的な不平衡回路による d モード伝送と言えど も信号源と負荷配置の非対称性に起因して比較的大きな モード変換が生じる例を示している.この結果は、既存 CM により観測される信号波形の周波数特性を示す.

図8は、伝送条件 Case 2の解析結果を示す.この回路

Figure 8: Analysis results of Case 2. (*a*) and (*b*) are similarly defined in fig. 7.

の信号源側は平衡回路になっており、負荷側は不平衡回路として計測される.実はこの回路は平衡回路と不平衡回路が衝突しており、通常は禁止される回路構成である. 解析によると両モードの周波数特性は大きく歪み、伝送信号に大きな劣化を示す計算例となっている.

図9は、伝送条件 Case 3 の解析結果を示す. この回路 は Case 2 と同様な条件であるが、特に Gnd. Line 線路 上にインピーダンスが存在する場合の計算例を示す. 解 析によると両モードの周波数特性は同様に大きく歪み、 伝送信号に大きな劣化を示している. この結果が、ノイ ズ対策改修前の新規 CM により観測される信号波形の周 波数特性を示す.

図 10 は、伝送条件 Case 4 の解析結果を示す. この回 路は信号源側と負荷側が共に平衡回路になっており、完 全ではないが対称性が比較的高い回路構成となっている. 解析によると d モードの振幅と位相に対する周波数特性 には歪みは殆ど見られない. さらに c モードが大きく抑 制されている. この結果から、伝送線路の対称性と構成

¹ 出力振幅は、f=0.1 MHz で 0 dBV (1 V) となるように規格化している.

Figure 9: Analysis results of Case 3. (*a*) and (*b*) are similarly defined in fig. 7.

Figure 10: Analysis results of Case 4. (*a*) and (*b*) are similarly defined in fig. 7.

要素の対称配置という考え方の重要性を理解できる. こ のように伝送線路に対する高い対称性が、これまで議論 した c モード抑制に対する基本となる.

6. ノイズ生成と抑制技術

図 11 に運転時に取得した長パルス電子ビームの CM 信号波形を示す. 図 11 (*a*) は、既存 CM (CM1, CM2) の 信号波形とノイズが重畳されたノイズ対策前の新規 CM (CM3) 信号波形を示す. 図 11 (*b*) は、CM1 及び CM2 信 号波形とノイズ対策後の CM3 信号波形を示す. 運転時 の長パルス電子ビームのパルス幅は ~1 µs (半値全幅)、 典型的な電荷量は CM1 で 347 nC/pulse、CM2 で 225 nC/pulse である.

明らかに CM3 には比較的大きなノイズが重畳してい ることが見て取れる. このノイズ波形が、本研究の出発 点となったノイズ波形である. 今回実施したノイズ対策 とは、3.2 節で議論した Acc Gnd. を無から有の状態に しただけである. しかし、この対策が有効となりノイズ レベルは振幅の大きさで ~1/10 に低減した. ちなみに CM1 及び CM2 には何も対策を施していないが、元々 Acc Gnd. 有の状態にあった.

これはノイズ源として、高電力クライストロンの動作 に起因する仮想的信号源 e₃ (図 5 参照)から計測系に回 り込んだノイズであると考えられる.このモデルでは、 e₃ はグランド電位を揺らすことになるので、これが原 因となりビーム信号を同時に揺らすと考えられる.しか し、ここで注意したいのはこのノイズ源はあくまでも c モード生成に寄与することである.もしモード変換が強 く抑制されていれば、オシロによる d モード計測系では 観測されないはずである.現実にはノイズが d モード計

Figure 11: Signal waveforms of the CMs (CM1–3) for a long-pulsed electron beam (*a*) before and (*b*) after noise suppression implementation only for CM3.

測系において観測されているので、伝送線路のどこかで ノイズに対しても同様なモード変換が生じたと考えられ る.この現象が、筆者が実際に観測したノイズ生成であ るが、このような単純なモデルで計測結果が適切に説明 できるのかどうかはこれからの課題である.

もしここで述べた議論が正しければ、高い対称性を保持した平衡回路による伝送線路を実現し、ノイズ源による c モード生成が抑制できれば、この議論を実験的に検証することができる.詳細な議論は文献 [2] を参照して 欲しい.

7. まとめ

本稿では、KEK 物構研低速陽電子施設における電子 線形加速器で利用される長パルス電子ビーム用電流モニ ターの信号伝送とノイズ低減技術について報告した. 解 析によると、信号伝送路上のグランド位置とその取り方 が本質的に重要で、このことが信号伝送に大きな影響を 与え、信号歪みやノイズ生成の原因になっていることが 判明した. 平衡不平衡回路における信号伝送は、ビーム モニターに限らず加速器技術全般に応用可能である. 安 定な加速器運転の実現を目指し、これまでのノイズ抑制 技術を再度見直すべきであろうと考えている.

参考文献

- [1] https://www2.kek.jp/imss/spf/.
- [2] T. Suwada, KEK Report 2020-01.
- [3] H. Toki and K. Sato, J. Phys. Soc. Jpn. 78, 094201 (2009).