佐賀シンクロトロン光応用研究施設電子リニアック 2002 年(設計現状)

富増多喜夫^{1,A)}、岩崎能尊^{A)}、安本正人^{B)}、橋口泰史^{C)}、山津善直^{C)}、木塚俊博^{C)}、落合裕二^{C)}
^{A)}(財)佐賀県地域産業支援センター、

〒840 8570 佐賀県佐賀市城内1 1 59 佐賀県経済部産業振興課 ^{B)} 産業技術総合研究所 光技術研究部門

〒305 8568 茨城県つくば市梅園 1 1 1 つくばセンター中央第2 ^{C)} 佐賀県 経済部 産業振興課

〒840 8570 佐賀県佐賀市城内1 1 59

概要

佐賀 1.4GeV シンクロトロン光源(佐賀 SL)の入射 器である 250MeV 電子リニアックの設計現状と平成 15(2003)年からの組立.調整の予定について述べる。 電子リニアックの長さは高電圧入射部を含めて 28.5m、電子ビームのエネルギーとマクロパルス長は 入射時 250MeV 以上で 1 µ s である。毎秒 1 パルス入 射で、1µs パルス中のミクロバンチ数は 22 (22.3125MHz、44.8ns 間隔)の多バンチ入射であ る。ミクロバンチ当たりのクーロン数は約0.6nCの 場合、毎秒約13nCの電子が加速され、セプタム電 磁石を通って入射される。リングの周長は75.5mで 1µsパルスは4周分のビームに相当する。入射時以 外での電子ビームのエネルギーとマクロパルス長は 40MeV で 12 µ s である。10H 運転が可能で自由電子 レーザー発生などに利用できる。12µs パルス中の ミクロバンチ数は約 1070(89.25MHz,11.2ns 間隔)で ある。今回は限られた施設スペースで入射エネルギ ーを上げる方策とその得失についても述べる。

1.はじめに

佐賀県 SL 応用研究施設の建設は佐賀県と科学技 術庁によって平成 10 年に認められ、平成 16 年度稼 働を目指して施設の基礎設計,実施設計が進められ てきた。平成 13 年から 14 年にかけて鳥栖市の北部 丘陵地区に約 4200 平方米の施設建屋が建設されて いる。

佐賀 SL の建設は、部品発注、組立・調整運転方 式で行なう方針が認められ、部品仕様の決定では実 績があり確実に稼働する最高性能のものが選ばれて いる。14 年 4 月から各種部品の発注が始められ、15 年 3 月から佐賀 SL の組立が始まる。

平成 11 年度の基礎設計では、1 GeV で周長 40m 程度の第2世代リングが候補として取り上げられた。 しかし高輝度光リングの有用性と九州地区の大学や 産業界の長期活用に期待して、1.4GeV で周長 75m, ウイグラーなど6台の挿入光源を設置できる最小規 模の第3世代高輝度光リングを設計した^[1]。 6 台の挿入光源のほかに電子入射部の直線部では レーザーを電子ビームに正面衝突させ、逆コンプト ン散乱によって発生する準単色 線^[2]を放射線検出 器の校正線源として活用することも可能である。

リニアックによる 1GeV 以下のリングへの低エネ ルギー入射例としては電総研(現産総研)での NIJI-I ~IV、TERAS への 150~310MeV 入射のほか、1.5GeV 級への低エネルギー入射例としては、ブラジル・カ ンピーナスの 170MeV 入射(最近 120MeV から増強) の 1.4GeV リング^[3]、米国ルイジアナ・CAMD の 200MeV 入射の 1.5GeV リング^[4]がある。300mA 以 上の蓄積電流を得るには 250MeV 程度の入射エネル ギーが必要とされている^[5]。

佐賀 SL の場合、スペースと予算の制約があり、 250MeV 電子リニアックによる低Iネルギー入射蓄積・加 速方式^[6]を採用する。将来の入射器活用の一つとし て低エネルギー部の 28~36MeV 電子ビームを用いて 二色(4~10µm、8~20µm)の赤外自由電子レーザー 装置^[7]の設置も可能である。

2.佐賀電子リニアック

電子リニアックの概略構成図を図1に、リニアッ クとビームの主要なパラメータを表1と表2に示す。 電子リニアックの主要部の構成はFEL研とほぼ同じ で、長寿命(千時間以上)の熱陰極電子銃からの600ps パルス長で1.2 n C の電子バンチを適切な集束レン ズ系により低エミッタンスを保ちながら約10ps パ ルスで0.6 n C バンチに短バンチ化できる6MeV バン チャー^[8]、12 µ s 長で出力平坦度0.1%以下の 2856MHz パルス高周波源^[9]の他に電子入射時に高加 速が可能な1 µ s 長で出力平坦度0.2%以下の 2856MHz パ い高周波源を備えている。1 µ s パルス高 周波源にはクライストロン E3712(2 µ s 88MW, 4 µ s - 80MW)を使用する。

¹E-mail: tomimasu@mb.infosaga.or.jp http://www.infosaga.or.jp/synchrotron/index.htm

図1.佐賀電子リニアック構成図

表1. Main paramaters of Saga linac

	-	-	表 2. Beam parameters of Sa	表 2. Beam parameters of Saga linac	
Gun	Thermionic triode	(EIMAC 646B)	-	-	
	Injection energy	120keV	Electron energy at injection	250MeV	
	Trigger pulse	150V-0.6ns pulse	Energy spread (FWHM)	0.5%	
	(89.25 MHz or 22.3125 MHz)		Peak current	130A	
	micropulse charge	1.2 nC	Beam radius	0.5mm	
	micropulse separation	on 11.2 ns or 44.8 ns	Normalized emittance 25	x 10^{-6} m-rad	
	macropulse duration	12 µ s	Micropulse charge	0.6nC	
	repetition rate	10Hz	Micropulse duration	4ps	
Prebuncher		Re-entrant type	Micropulse separation	44.8ns	
	Frequency	714MHz	Macropulse duration	~1 µ s	
	Q-value	~2000	Macropulse repetition rate	1Hz	
	Peak field	80kV			
Buncher		Standing wave type	Electron energy at FEL application	~40MeV	
	Frequency	2856MHz	Energy spread (FWHM)	~1%	
	Energy	~5MeV for 1MW rf	Peak current	60A	
	Energy spread	100keV(FWHM)	Beam radius	0.5mm	
Accelerating waveguide		Travelling wave type	Normalized emittance 25	x 10^{-6} m-rad	
	Length & number	2.9298m x 6	Micropulse charge	0.6nC	
RF por	ver at injection	36MW + 88MW	Micropulse duration	6ps	
	at application	36MW	Micropulse separation	11.2ns	
			Macropulse duration	12 µ s	
			Macropulse repetition rate	10Hz	

電子リニアックの進行波型加速管は約 3m 長で filling time は約1µs である。従ってマクロパルス長 1µs の電子ビームを加速するには加速管に 2µs 長 の高周波が必要で、E3712 の出力として 2µs 88MWを選んでいる。 毎秒1パルス入射で、1µs パルス中のミクロバンチ数は 22 (44.8 ns 間隔)の 多バンチ入射である。パルス長を4µs」から2µs に することで、高周波出力が80MWから88MWに10% 増加できるので、コスト増なしで電子エネルギーは 5%、即ち12.5MeV 増加し262.5MeV となる。

電子リニアックのエネルギー増強に SLED(SLAC Energy Doubler)を採用することも検討している。こ の場合,E3712の出力として4µs-80MWを選ぶと、 2µs 160MW 近くの約2倍の高周波出力得られる ので図1に示された AT3~AT6の4本の加速管に 160MWを供給すれば高周波入力は約2倍になるの で、4本の加速エネルギーが180MeVの場合電子エ ネルギーは72MeV増加し,322MeVとなる。しか し,]160MWの合成出力波形は中国桂林地方の山形 状であり、電子エネルギーを揃えるために高周波出 力を0.2%程度に揃えるとなると毎秒2バンチ入射 にせざるをえないし、コスト増も大きい。

22 バンチ入射を 2 バンチにするのなら、ビームを AT2~AT6 の5本の加速管(全長で約20m)で2度加 速する方法も検討に値する。44.8 ns 間隔の2 バンチ 加速が可能なので、5本の加速エネルギーが210MeV であれば 210MeV 増加し全加速エネルギーは 460MeV となる。 コスト増よりも調整時間が必要 になる。

3.電子リニアックの発注・組立調整予定 3.1.発注

14年8月

リニアック入射器 (電子銃、プリバンチャー、バン チャー)、加速管、架台、ビームモニター等の発注

14年9月

各種温調冷却水装置、配管工事、RF系部品、クライ ストロン,パルス変調器、グリドパルサー、リニアッ ク真空系、電磁石、電磁石電源、ビーム制御系、

14 年 10 月以降 各種配線工事

3.2. .組立・調整 15年3月~5月 リング電磁石架台据付、基準点設定

15年4月~6月 温調冷却水装置、配管据付

15年7月~8月

リニアック入射器、加速管、架台、等の据付 基準点設定、ビームモニター位置合せ 15年9月~10月 リニアック RF 部品、クライストロンとパルス変調器の組立・調整(局操、遠操) リニアック真空槽の組立、真空立上げ 各種電磁石と架台の組立、位置合せ 各種電磁石電源据付配線工事 インタロックを含む各種制御系配線工事

15年11月~12月

リニアック電子銃及び加速管のエージング(遠操)

16年1月~2月 リニアック・ビーム加速テスト(遠操)

16年3月~ リングへのビーム入射・ビーム蓄積(遠操)

参考文献

- T. Tomimasu et al., "Saga synchrotron light source I (design study)", Abstract of the Asian Forum on Synchrotron Radiation (Hiroshima Univ., Jan. 14-16, 2001) 19-1~3.
- [2] H. Ohgaki et al., "Linearly polarized photons from Compton backscattering of laser light for nuclear resonance fluorescence experiments", Nucl. Instr. Meth. A353 (1994) 384-388.
- [3] R. H. A. Farias et al., "MAGNETIC DESIGN OF THE LNLS TRANSPOT LINE", IEEE Proceedings of PAC'95, Dallas, May 1-5, 1995, pp. 1361-1363.
- [4] R. L. Stockbauer et al., "A NEW SYNCHROTON LIGHT SOURCE AT LOUISIANA STATE UNIVERSITY'S CENTER FOR ADVANCED MICROSTRUCTURES AND DEVICES", Nucl. Instr. Meth. A291 (1990) 505-510.
- [5] H. Saisho and H. Takada, "KANSAI MEDIUM –SCALE SYNCHROTRON RADIATION FACILITY", Proceedings of the International Symposium on Medium-Scale Synchrotron Radiation Facilities in Asia (Hiroshima Univ.,July 5, 1990) pp.168-177.
- [6] H. Takada et al., "Effects of Increasing Injection Repetion Rate of Low-Energy Injection into a Compact Storage Ring", Jpn. J. Appl. Phys. 28, L1304(1989).
- [7] M.Yasumoto et al., "Two-color IR-FEL facility for semiconductor and bio-medical applications at Saga synchrotron light source", to be published in proceedings of the international symposium on the infrared free electron laser and its application, Noda, Jan 31-Feb.2 2002.
- [8] T. Tomimasu et al., "Strong focusing system of FELI 6-MeV electron injector used for ultraviolet range FEL oscillation", Nucl. Instr. Meth. A407 (1998) pp.370-373.
- [9] E. Oshita et al., "24-MW,24 µ s PULSE POWER SUPPLY FOR LINAC-BASED FELs", IEEE Proceedings of PAC'95, Dallas, May 1-5, 1995, pp. 1608-1610.