低速陽電子ビームの高輝度化

山口 倫宏¹、誉田 義英、田代 睦、磯山 悟朗 大阪大学産業科学研究所 〒567-0047 大阪府茨木市美穂ヶ丘 8-1

はじめに

放射線実験所ではSバンド電子ライナックを用い、 高強度の陽電子ビームを生成し、このビームの利用 した陽電子回折装置の開発を進めている。陽電子回 折実験に使用するには、非磁場中で高輝度の陽電子 ビームが必要である。しかし、現在のところ磁場か らの切り離しの際ビームのロスが多く、期待した輝 度の陽電子ビームが得られていない。本稿ではより 高効率に磁場から切り離す方法と新しい陽電子発生 部について報告する。

1.高輝度化装置と問題点

電子ライナックを用いて生成された陽電子ビームは、 陽電子発生部から、ソレノイドコイルなどの磁場を 用いて、図1に示されている高輝度化装置へ輸送さ れる。高輝度化装置は磁場からの切り離すための静 電レンズ、リモデレータ(陽電子の再放出現象を利用 した単色化装置)、再放出陽電子を収束させる集束用 静電レンズで構成される。

一番目の静電レンズで、陽電子ビームは磁場から

切り離され、同時にリモデレータ上で最もビーム径 が小さくなるよう集束させられる。リモデレータ上 に集束された陽電子ビーム(の一部)は、その表面から 再放出し続く集束用静電レンズで集束される。図1 には磁場輸送中と、高輝度化装置を通過した陽電子 像が示されている。陽電子ビームはこの装置をもち いてビーム径20 3 mm、ビーム強度10⁶ 10⁴/s に加 工される。

この装置によって陽電子ビームは小さくなった が、ビーム強度が大きく減少した。そのため現在の ところ回折像を得るまでには至っていない。この原 因を調べるため、高輝度化装置の各位置でビームの 強度を測定した結果、ビーム減少の大部分は磁場か らの切り離しの時に起こっていることが分かった。

2.磁場輸送

生成された陽電子ビームは、発生部から磁場中を輸送され、磁場からの切り離しリモレデータに入射する。ここまでの過程はすべて保存場中であるので、 ビームのエミッタンスは保存する。したがって、ビ

¹ E-mail: yamagu25@sanken.osaka-u.ac.jp

ームの磁場からの切り離しの際、ビームが発散し、 多くの陽電子が失われる原因は、陽電子が発生する ときにあると考えるのが自然である。そこで陽電子 発生時の

・ビームのエネルギー

- ・ビームのエネルギー拡がり
- ・ビーム径

が磁場からの切り離しの際どのような影響があるの かを調べた。

3.磁場からの切り離し

3.1 ビームエネルギーによる影響

ビーム軸方向の磁場変化に対するビーム径の変化 を、実験の体系でシミュレーションした結果を図2 に示す。図2上段は、シミュレーションで使用した 陽電子発生部付近の磁場輸送系および、磁場からの 切り離しまでの構造を模式的に示したものである。 実際のビーム輸送は、より多くのコイルを配置して いるが、シミュレーションでは簡略化のためコイル の数を少なくしている。図2下段は、この体系のも と、全エネルギーを 500 eV(実線)、1000 eV(破線) にした千個の粒子に初期条件をランダムに振り分け、 電磁場中のビームエミッタンスからビーム径を評価 した結果である。図中A~Fはそれぞれビーム径を 評価した位置を示した。

磁場がなくなると、どちらもほぼ同じ発散をする

が、磁場が少し残っているところでは、低エネルギ ーの方が発散は小さい。また低エネルギーで引き出 した方が、発散が緩やかである。実際の切り離し位 置での磁場強度は 0.003 T あり、このときのビーム 径は 500 eV の方が小さい。結果、輸送エネルギーが 低い方が多くの陽電子を得ることができると考えら れるがその差は小さい。

実際の実験結果では 400 eV で輸送した場合、磁場 からの切り離しでのロスは 64%、1000 eV の場合 76% となり約 10%の差があった。この差は陽電子発生部 の構造上、ビームエネルギーが大きくなるとビーム 径が大きくなり、磁場からの切り離しの際、真空配 管や電極に当たるため生ずると考えている。

3.2 ビームのエネルギー広がりによる影響

ビームは発生部形状や発生条件などから、その進 行方向(軸方向)の速度成分の拡がりと、それに垂直 な方向の速度成分の拡がりをもつ。前者の速度成分 の拡がりをエネルギー換算したものを縦方向のエネ ルギー拡がり、後者のそれを横方向のエネルギー拡 がりと呼ぶ。

現在の陽電子発生部はより多くの収量をえるため、 陽電子の引き出し方向に対して多層型の構造をして

おり、各層に段階的に電圧が印加される(図3)。各層に印加される電圧の大きさはビームエネルギーが 大きくなるほど大きくなるため、高いエネルギーを もつ陽電子ビームは縦方向のエネルギー拡がりが大 きくなる。2.1 に示した実験結果によれば、ビームの エネルギーの大小にかかわらす、それほど磁場から の切り離しに影響がない。これは縦方向のエネルギ ー拡がりは、磁場からの切り離しに与える影響は少 ないことを表している。

コイルなどの軸対称磁場中で、荷電粒子は軸方向 と垂直な速度成分に比例した半径(ラーマ半径)をも って回転運動を行う。図4は磁場とビーム径の関係 を示したもので、ビームの軸方向と垂直な速度成分 をエネルギー換算したもの(横方向のエネルギー拡が り)とビーム径を変化させたものである。荷電粒子を 磁場から切り離すということはこの回転運動を解く ということになるので、横方向のエネルギー拡がり が大きいほど回転半径は大きくなりより大きく発散 すると思われる。しかし{横方向のエネルギー拡が り/全エネルギー}が数%程度の場合、横方向のエネ ルギー拡がりが、ビームとして全体の発散に及ぼす 影響は少ない。

3.3 ビーム径による影響

ビームの切り離しの際、もっとも大きな影響を与 えるのはビーム径である。図4の実線と破線を比較 すると、陽電子生成時のビーム径が4倍になると、 磁場から切り離したときビーム径は2倍になる。ま た、2.1からも、ビーム径が小さいほど磁場からの切 り離しの際、ビームロスが少ないという結果が得ら れている。

4. 陽電子発生部

上記の実験及びシミュレーションから、より多く

図5:新しく開発した小型発生部

の陽電子を磁場からの切り離すために有効なのは ・陽電子発生時のビーム径を小さくする

ことである。これを考慮して、高効率でサイズの小 さい陽電子発生部の開発を行った。

図5に新しく開発した陽電子発生部を示す。これ までのものに比べ層が二つ増え、周りにタングステ ンの板を配置したことと、陽電子が放出されるタン グステン箔のを多く設置したことで、より多くの陽 電子を得ることができる。層の増加は縦方向のエネ ルギー拡がりを増加させるが、磁場からの切り離し にこの影響は少ない。また、小型化により発生時の ビーム径が1/4 になる。

5.まとめ

初期陽電子ビームが磁場からの切り離しに与える 影響を調べ、新しい陽電子発生部製作した。今後、新 しい発生部から陽電子を発生させ、磁場からの切り離 しおよび高輝度化の実験を開始する。