マイクロミニチュア RF 電子銃

田辺 英二^{1,A)}、菅野 浩一^{A)} ^{A)} AET Japan, Inc. 〒215-0004 川崎市麻生区万福寺 1 -2-3 アーシスビル 9 階

概要

コンパクトでかつ経済的な、低エミッタンス電子 ビームを発生できる電子源として熱陰極 RF 電子銃 は広く活用されている。しかし、逆加速された電子 ビームが陰極にあたることによるバックボンバード メント現象によって 2µsec 以上のパルス幅の電流は 不安定になる。そこで、電子ビームの引出しと速度 変調を超小型の RF 電子銃で行ない、バックボンバー ドメントをなくす三極管型 RF 電子銃の開発を行っ ている。これによりエミッタンスとエネルギー幅も 同時に小さく出来ることが、3次元電磁界解析コード MW - Studio、及び 2.5 次元電子軌道解析コード GPT によるシミュレーションから示唆された。現在、AET のRF電子銃の熱陰極と置換可能な小型RF電子銃の 開発を進めている。また、この技術を用いて、人体 内部に挿入可能な超小型 X 線源用のマイクロミニチ ュア RF 電子銃の開発も行っている。

1.はじめに

RF電子銃は DC 電子銃に比べ、比較的高い電界を かけることができ、装置の小型化や電子ビームの低 エミッタンス化に有効である。また、熱陰極は安価 でマイクロ波電子管などに広く応用されており、長 い歴史と実績がある。しかし、RF電子銃に熱陰極を 使うとバックボンバードメントが起こる事やパルス 幅の制御が出来ないなどの欠点があった。そこで、 バックボンバードメントをなくし、得られる電子ビ ームのエミッタンスを小さくし、同時にパルス幅を コントロールするため、三極管型 RF電子銃の開発を 行っている。この三極管型 RF電子銃の入力用のマイ クロミニチュア RF電子銃は医療用・工業用の新しい 電子源や X 線源として利用できる可能性がある。

2. 三極管型 RF 電子銃

図1に一般に使われている熱陰極を使った二極管型RF電子銃と現在開発を行っている三極管型RF電子銃との比較を示す。二極管型熱陰極RF電子銃では、ある位相で加速された電子はカソードに戻ってくるバックボンバードメント現象が起こる事が良く知られている⁽¹⁾。また、加速される電子ビームのパルス幅は、RF空胴の加速電界のパルス時間で決められ、コントロールするのは不可能である。これらを避けるため、レーザーによる光励起型のフォトカソードが使われるが、システムが高価で複雑となり一般的な

図1:熱陰極 RF 電子銃。左が二極管型 RF 電子 銃、右がλ4 同軸共振器を取り付けた三極管型 RF 電子銃。

応用には向いていない。

一方、この二極管型 RF 電子銃にもうひとつの小型 共振器を設け、メインの加速空胴の加速電界に使わ れるマイクロ波電力のほんの一部を供給することで ビームを取り出し、同時にバンチングさせて電子を メインの加速空胴に供給することによりビームをコ ントロールすることのできる三極管構造が考えられ る。この小型共振器はリエントラント構造でも可能 であるが、共振器の外径を現在使われている RF 電子 銃の熱陰極と同じ程度(約 5mm)にするためにλ/4 型ミニチュア同軸共振器を使うこととした(図2)

実際に三極管構造にする事による効果を調べるため、一般的に使われている BNL型 RF 電子銃で比較検討を行った。すなわち、1.6cell S-band RF 電子銃空胴に上記のミニチュア RF 電子銃を取り付けた図3のような熱陰極 RF 電子銃を仮定しシミュレーションを行った。図4、5 にそれぞれの RF 電子銃に関する電子軌道シミュレーションによって得られた電子

¹ E-mail: etanabe@aetjapan.com

ビームの時間に対する位置の変化を示す。図 4 では まず二極管型 BNL RF 電子銃においてメインの加速 空胴内に入った電子の一部が逆加速されてカソード に戻ってくる状態が示されている。一方、図5にお いてはこれを三極管型にすることで、まず電子ビー ムの引出しとバンチングが行われる。この時、熱陰 極にかかる平均加速電界は充分に高い(45MV/m)が、 ギャップ長が1mm 程度であり40keV 程度に加速され る。この加速電界の位相、電圧とドリフト長を選ぶ ことで、メイン加速電界の最適の位相条件でビーム を入力する事が出来る。図 5-b)にはミニチュア RF 電子銃近辺のビームの位置を拡大して示す。ある位 相のビームはやはりカソードに逆加速されてはいる が、この逆加速されたビームエネルギーは二極管の RF 電子銃で逆加速されたビームのエネルギーより はるかに低いものであり、カソードに対するバック ボンバードメントの影響には殆ど寄与しない。図6 にはビームのエミッタンスの変化を示す。これより ビーム入力が加速電界の位相に対して最適化される ことでエミッタンスを大幅に低くすることが示され ている。

図3:三極管型 1.6cell S-band RF 電子銃。 $\lambda/4$ 型 同軸共振器とBNL型 RF 電子銃空胴を組み合わ せる事により三極管型 RF 電子銃空胴を構成す る。

図4:二極管型 RF 電子銃のビーム位置と時間 変化に関する計算結果。Z=0 をカソード面とし ている。加速空胴内に入った電子が逆加速され カソードに戻る現象が見られる。

図5:三極管型 RF 電子銃のビーム位置と時間 変化に関する計算結果。Z=0 をカソード面とし ている。a)三極管全体のビーム位置、b)ミニチ ュア RF 電子銃近辺のビーム位置を示す。

3.マイクロミニチュア RF 電子銃

直径 5 mm 以下の電子源は RF 電子銃のみならず 様々な用途が考えられる。図7 にフレキシブルな同 軸線を使い、その先に λ/4 型同軸共振器を付けたマイ クロミニチュア RF 電子銃の基本構造を示す。また、 表1に S-band で設計したマイクロミニチュア RF 電 子銃の設計パラメータを示す。

表1.S-band マイクロミニチュア RF 電子銃

周波数	2856	MHz
共振器長	2.67	cm
同軸外形	5.42	mm
同軸内径	2.36	mm
Q 値	1016	
入力電力	74	kW
加速電界	~ 45	MV/m
ビームエネルギー	40	keV

マイクロミニチュア電子銃を超小型にする為、カ ソード材としてカーボンナノチューブ (CNT)を使 った設計を進めている。CNT は一本のナノチューブ 当たり 1µA までの電子の放出が得られるとされてお リ、ナノチューブの平均密度が 10⁹/cm² 程度とすると 1mm²では 10A 程度までは得られると予想される。炭 素の結合が共有結合であることや電子流が広い面積 に分散することから熱やイオンの衝突に対しても強 く、低い真空度(10⁻⁸Torr 以下)でも長寿命(直流12kV で1万時間以上)で使用できる^[2]。図8に電流電圧特 性を、図9に Fowler-Nordheim(F-N)プロットを示す。 直流の場合もパルスの場合もほぼ同じ F-N の式の直 線状にのっており、予想通り 1mm² 当たり 1A から 10A 以上の電子電流が得られている。低い電圧での 電流値の変動はコンディショニングの効果である。 コンディショニングの過程でアーク放電が何度か起 きたが、一度でも放電が起きれば壊れてしまうニ・ ドル電極と異なり CNT 陰極ではその後も安定して電 子の放出が得られた。電子放出の安定性、及び充分 な電流値が得られることから CNT 陰極は超小型加速 器に適しているとの結論に至った。

4.まとめ

熱陰極を使った二極管型 RF 電子銃に同軸共振器 を使った超小型の RF 電子銃を付け加え、三極管構造 にすることによりバックボンバードメントを殆どな くす事が出来る。また、この構造においてはビーム エミッタンスを下げ、エネルギースペクトラム幅を 大幅に改善できる事が分かった。この小型同軸共振 器の直径を更に数 mm 以下に下げ、カソードにカー ボンナノチュープを使うことでマイクロミニチュア RF 電子銃を作ることができる。このマイクロミニチ ュア RF 電子銃は将来の医療・工業・研究の分野にお いて様々な応用が考えられる。

参考文献

[1] F.Oda, et al., "赤外自由電子レーザー用熱陰極 RF 電 子銃の性能評価",Proceedings of the 26th Linear Accelerator Meeting in Japan, Tsukuba, Aug. 1-3, 2001 [2]Y. Saito and S. Uemura, Carbon 38 (2000) 169-182