FEL-SUT における遠赤外自由電子レーザの設計・製作

小池英仁^{A)}、 傍島正明^{A)}、Vasilly M. Popik^{B)}、横山稔^{A)}、河合正之^{A)}、

豊田浩一^{B)}、黒田晴雄^{B)}、中井浩二^{B)}

^{A)}川崎重工業株式会社 技術研究所

〒278-8585 千葉県野田市二ツ塚 118

^{B)} 東京理科大学 総合研究所 赤外自由電子レーザー研究センター

〒278-8510 千葉県野田市山崎 2641

概要

東京理科大学と川崎重工業(株)の共同開発グル ープは発振波長域300~1000µmをターゲットとした 遠赤外自由電子レーザ(FIR-FEL)の設計を2000年 に完了し、2002年4月に東京理科大学赤外自由電子 レーザ研究センターに設置を完了した。本 FIR-FEL 装置はSバンドリニアックで加速された電子ビーム を導波管型共振器内でFEL光を増幅させるための構 成となっている。

1.はじめに

FEL - SUT は川崎重工業(株)が設計・製作した S バンドリニアックを用いた中赤外域(4~16 μm)に 発振領域をもつ中赤外自由電子レーザ(MIR-FEL) の初発振を 2000 年 6 月に達成した。その後、2001 年 6 月より波長域 4~16 μm の FEL 光をユーザーへ 供給するユーザー運転を開始している[1]。

FIR-FEL は MIR-FEL で用いている RF 源を共有す るかたちで設計された。(主な構成を Figure1 に RF 切替器部を図2に示す) S パンドを用いたリニアッ クを用いた長波長領域で問題となるスリッページ、 長波長領域での回折の問題を低減するためにアンジ ュレータ間に設置する真空チャンバを導波管構造と したことに特徴を有する[2]。ここでは、製作され た FIR-FEL 装置について述べる。

2.導波管をもちいた共振器

S バンドリニアックを用いて生成される電子ビームのミクロバンチ長は数ピコ秒と短く、特に長波長領域では電子の併進速度と光の郡速度の相違から生じるスリッページが問題となる。本設計の FIR-FELでは郡速度を遅延させる目的で導波管を適用した。さらに、導波管の適用は長波長領域の回折を低減させ、さらにフィリングファクターや電子の感じる電場を強める。

導波管の間隙は 4.5mm であり、K 値 3.4 でゼロス リッページ状態になるように決定した。ゼロスリッ ページでの現象はフラスカチにて実験的、解析的に 研究され、2.4mm 付近で発振に成功している[3]。

導波管間隙4.5mm にて波長域300~1000μmの発振 を達成するために電子ビームエネルギー10MeV、ア ンジュレータ周期長70mm(アンジュレータ周期数 25)と決定した。

また、4.5mmの導波管内面間にこれと同程度の厚みをもつ円筒ミラーを挿入する共振器構造となっており、アンジュレータチャンバの外にミラーを設置するタイプの共振器で起こり得る損失を低減させる構造である。ミラーと導波管の隙間から生じる損失はせいぜい数%と見積もられる。

Figure 1 Schematic view of FIR-FEL at FEL-SUT

Figure2 MIR (左) FEL および FIR (右) - FEL

3.加速部の特徴

Figure1 のとおり、FIR-FEL の加速器部は MIR-FEL の加速器部と同じ構成であり、熱陰極 RF ガン、アル ファ電磁石、全長 1.5mの加速管で構成されている。 クライストロンからの 45MW パワーは RF 切替器に て MIR-FEL か FIR-FEL のいずれかの装置に供給され る。

電子ビームの性質は 32-40MeV リニアックを用いた MIR-FELの実験結果より予想することが可能である。熱陰極 RF ガンは最大約 1.9MeV まで初段加速可能であり、1.5m加速管は初段加速された電子ビームを最大 15MeV まで加速することができる。アルファ電磁石内のビームスリットにて低エネルギービームをカットした後でマクロパルス 5.5µs、マクロパルス 電流 150mA、エネルギー幅約 200keV を得ることが可能である。

なお、MARK では同様の構成にて 0.7ps 以下のミ クロバンチを得ているように [3]、ミクロバンチ長 はアルファ電磁石およびシケイン電磁石の磁場調整 により 1~10ps 程度で可変であると考えられる。

4.まとめ

東京理科大学と川崎重工業(株)の共同開発グル ープは発振波長域300~1000µmをターゲットとした 遠赤外自由電子レーザ(FIR-FEL)の設計を2000年 に完了し、2002年4月に東京理科大学赤外自由電子 レーザ研究センターに設置を完了した。

Table 1 Design parameters of FIR-FEL at FEL-SUT		
FEL radiation		
Wavelength	300 ~ 1000	μm
Electron Beam		
Energy after RF Gun	~ 1.9	MeV
Energy after Accelerator	10	MeV
Macropulse current	150	mA
Energy spread (fwhm)	2.0	%
Normalized emittance	30	mm-mrad
Undulator		
Туре	Halbach	
Period	70	mm
Number of periods	25	
K value	2.0 ~ 3.4	
Optical Cavity		
Waveguide size ($Y \times X$)	4.5 × 70	mm ²
Mirror Curvature	2.0	m
Cavity length	2.5	m
Coupling hole	~ 1.5	mm

設計・製作した導波管およびミラー構造はスリッページ、回折損失を低減する。

まお、本装置は 2002 年 8 月ごろより運転調整を開 始する予定である。

参考文献

- M. Yokoyama, F. Oda, K. Nomaru, H. Koike, M. Sobajima, M. Kawai, H. Kuroda, Proceeding of the 23th. International FEL conference
- [2] G.P. Gallerano, A. Doria, E. Giovenale and A. Renieri, Infrared Phys. 40 (1999) 161
- [3] E.B. Szarmes, A.D. Madden, J.M.J. Madey, Nucl. Instr. and Meth. A358 (1995) 220-223