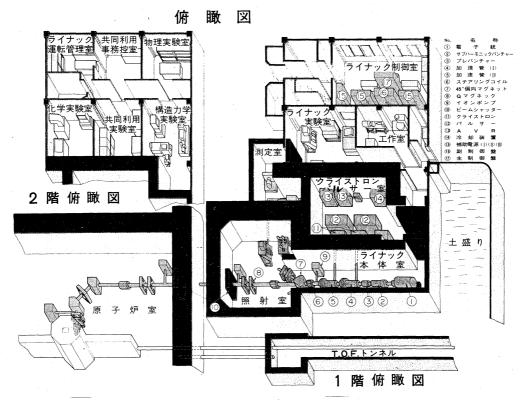
東大リニアツクの現状

田畑米徳 (東京大学工学部原子力工学研究施设)

昭和 竹年度より昭和 51年度93年向に亘って、35MeVの電子報配加速器の建設が行われ、引続いて昭和52年度には付審研定設備が建設であってる。電子報を加速器を現在東海村東京大学を3カエ会研定超设にある高速中性3 酒炉やかい、と連結し、電子やルスを直接3 在は個接路に炒べに打色サルで3 かりゅうのである。原子炒のかれて運転によって厚子炒約であるが工等の裏で行い原子炒の動的中のでがある。なか、一つの日的である。原子炒のやルス運転によって厚子炒約であるが工等の裏で行い、炒没汁や炒の安全にいついて有用を知見を得ることが出来る。 もう一つの日的は、得テルる電子やルスや申れ子やルスを同いて、物な理、化学、生物の分野ルおける過程理影の研究を行うことが多る。 パルス やは マイクロ (10分析、ナ) (10分析、ナ) (10分析、ナ) (10分析、ナ) がよか ヒッコ(15か) 行の電子ルスであり、 おおお効果の初期追社の研究を行うことが出来る。

厚み炉はマイクチウのペースかあ込に得られかは目的か産成でれるので、加速器の特徴と12 15,後 たの研えの私めの超短パースの発生にある。 42 特の短い量ペルスが得るれているのは米リアルプレス 原る力研えかのしがントの装置と分向建设(な S-バンドの東大ライナワクだけである。 ルース中から え之ドーアルゴンスか 4016 ピコチケ かろり、東大のか 10~20 ピッチケ かろる。 20 で ス を含む名柱のマード ひ ピコ 行を得る最も時 同分解 能の為い 変置が、運転 可能になっ なとええよう。 施設を体が俯瞰回を次関にます。

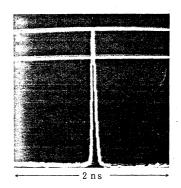

研光计画, 概要以次,各位图233.

(1)ライナワクと厚まけてり運動運転 (2)炒りルルス化による炒物致,炒工をり研究 ③ピコ粉パルスランオリレス (5)フイツレコレニュートロン・ペルスランオリレス (6) 時間分解能 ESR り測定・(ク) 仕エネルギー・ホーントロよる おじトロニウム 化学の研究 (8) タイム・オブ・フライト 測定 (丁ロF) (9) 熱術要に傷する研究 (10) イオン分子及占りる可定 (11) 高速石管計測至の衛発

加速器学等により、過渡により、もに仕称な上まれる新年が得られ、1位間に運転か続けられている。 唇がか、角動の準備としては、金属ケーゲットへの照物、引発、工模凝ψかへのかにスカ打込み、 最終的に生かへの打込みが行風であ、実施に移てよりつるる。

弱声のもめの段(角ももに各地目の対応して、整体、準備が進んでいる。

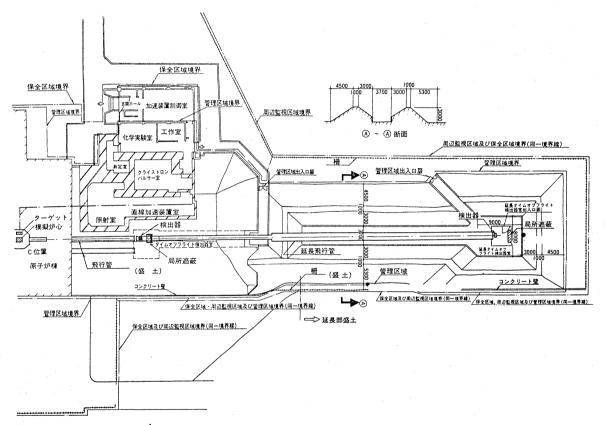
製造の規能、長いかんな、短いのハスルついてなお近と実例位、短いスの肖しいですない、 老いまとめて、次を以下に吸次すす。 ならい研究の署様ルコリュモ、それらの根略を何いよって後明する。 本施技は研究施設を中心にしなワーキングループのメンバーと外却よりgマ、三の協力参加者とはよって設け、建設が行われな。 なお、加速長は主義を核いよって製作されな。

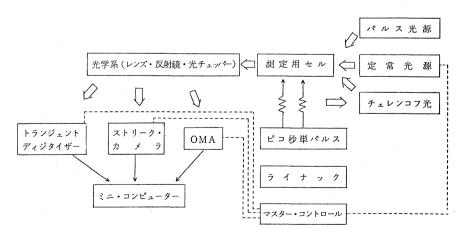

ライナックの主要な性能

(1) 定常モード

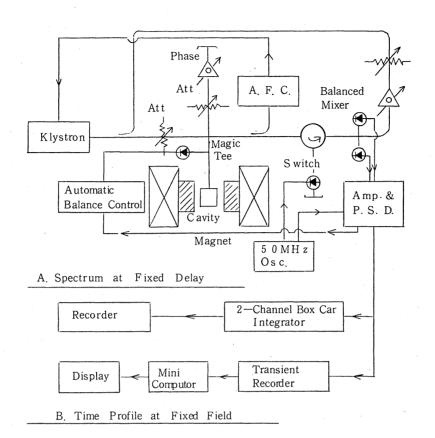
項 目	仕 様 値	実 測 値
ビームエネルギー	3 5 MeV (0 mA)	3 8 M e V
The second of th	2 5 MeV (200mA)	2 6.8 Me V
ビーム電流	200mA (25MeV)	2 3 0 m A
パルス巾	0.1, 0.5, 1.0, 4.5 µs	0.1, 0.6, 1.1, 4.5 µs
繰返し数	1 0 ~ 2 0 0 pps	7~200pps
制御トリガ	単発トリガ、外部	トリガ 可能

(2) 過渡モード

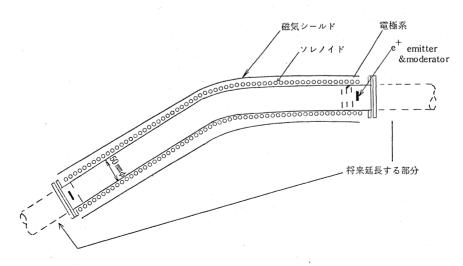

	Zi, C				
		項 目	仕 様 値	実 測 値	
-	1 (1 0 n s ビーム			
		ビーム電流	2 A	2 A	
		パルス巾	1 0 n s	1 1 n s	
		ビーム径	4 mm φ (8 0 %)	4×3 mm ϕ	
		バンチ巾	2 0 p s	< 1 8 p s	
		電流安定度	± 3 % / 5 min	± 1.5 % / 5 min	
		14	±6%/60min	± 3%/60min	
1/6 R F ビーム					
		電荷量	1 n C 以上	1 n C	
			(FINE STRUCTURE)		
		パルス巾	1 0 n s	1 0 n s	
SINGLEE-A					
		電荷量	300pC以上	1 n C	
1					


SINGLE ビーム ストリークカメラ

ピコ秒単パルスビームの性能


バンチ幅	1 8 ps
電荷量	1 nc
ビーム径	2 mm ø
エネルギー	E:366 MeV
	△E/E : 1.8%
電流安定性	7%/10 min
パルス繰り返し数	$7 \sim 200 \text{ pps}$
制御トリガ	単発トリガ、外部トリガ
	電荷量 ビーム径 エネルギー

タイムオブフライト実験装置



ピコ秒単パルスを用いたパルスラジオリシス・システムの概略図

時間分解能ESRのブロックダイアグラム

slow e⁺ エネルギフィルター及び電極系

