A 750 KEV RFO LINAC FOR PROTON ACCELERATION

T. Kato, Z. Igarashi, C. Kubota, E. Takasaki, T. Takenaka and S. Fukumoto

National Laboratory for High Energy Physics

ABSTRACT

Electron acceleration experiments were performed successfully using the first model RFQ designed for proton acceleration. A 750 keV proton RFQ linac was calculated and mechanically designed on the basis of the experience of the first model RFQ. Details of the vane fabrication were studied.

1. 園子加速実験

角型RFQ空洞のオイモデルを製作し、rf特性、特に軸上の電場分布に良い結果を得たので、この空洞を用いて、電子加速実験を試みた。目的は、オノにビームが加速できることを

確かのること。これは、空洞設計のコンピューターコード(QKEK)とこれに基くベイン加工を確かめることを目的 とする。 オ2に詳細な beam dynamics を 石 ですることで ある。空洞のパラメータ を Table 1 に示す。表に示すエネル ギーは、陽子加速用の design値なので、電子加速の場合に は、Me/mp = 1/836 の割合だけ減少することになり、入射 エネルギー 27eV、加速エネルギー 83eVとなる。実験の プロックダイヤグラムを図1に示す。RFQ空洞、電子銃そし

	Table 1 Parameters	of the i	first and	second
	RFO.	first	second	
	Frequency	201.08	201.08	MHz
٠,	Injection energy	50	50	keV
	Final energy	153	750	keV
	Vane voltage	22	89	kV
/	Number of cells	66	118	
	Vane length	59.5	136.4	cm
-	Initial radius	2.3	2.4	cm
-	Minimum radius	0.4	0.4	cm
,	Initial modulation	1.0	1.0	
ſ	Maximum modulation	2.0	2.0	100
•	Initial phase	-90.0	-90.0	
	Final phase	-30.0	-30.0	
	Normarized		0.41	тсш
	Acceptance			mrad

て Faraday カップを 真空容器の中へ入れ、ターボポンプにより 10^{-5} へ 10^{-6} Torr にする。地磁気の影響が大きいので、チェンバーの内外には 2重に μ - metal により 石磁気シールト、をほどにした。 又、 TV用の電子銃を使用した。 図2に透過電流 vs 入力 rf 電力を示す。 オ1 モデルが Pルミニウム製 であって Q-値が良くないこと等を考慮すると、加速に必要な rf 電力は 2.6 mV になる。 図3 に、透過電流 vs 入射エネルギーを示す。 期待される値 27eP7 が見られる。 本図には、入射エネルギーを変える時に RFQ への入射電流値が変化する影響が含まれているので、 t0-クの 中等については細かい考察が必要と

なる。 透過電流が少ない原因としては アラインメントが不充分なこと、入射電流をコントロール すべき

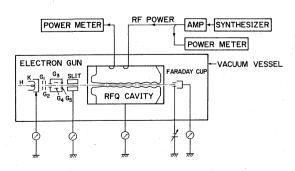


Fig. 1 Block diagram of the electron acceleration experiment.

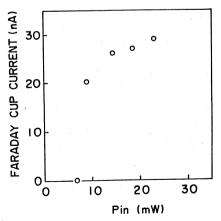
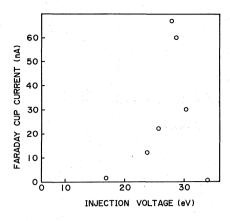



Fig. 2 Output currents versus exciting rf power. Injection energy is 27.5 eV.

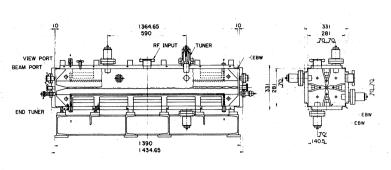
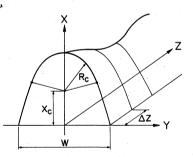


Fig. 3 Output currents versus injection energy. Exciting rf power is 5.4 mW.

Fig. 4 Mechanical design of 750 keV proton RFQ.


devicesが不完全であること、地磁気の影響がまだ残っていること等が考えられる。 過率は 0.3%と推定される) 分後、電子銃を含む入射部分を改良し、より厳重な磁気シールドを ほどこして、実験を行なう予定である。

2. 750 Kev 陽子加速 RFQ

2.1 設計

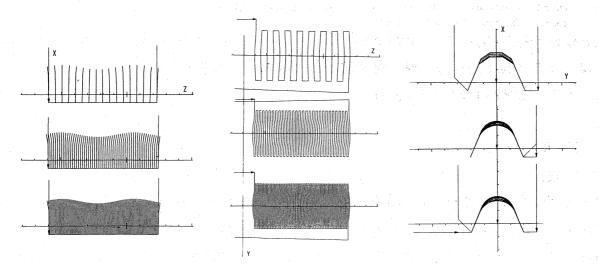
オノモデルの経験を生かして、陽子加速用RFQ(オ2モデル)の設計を行なった。 design値 をTable 1 に示す。KEKのブースターシンクロトロンで予定されているH入射を考えて、 current /imit は 98mAと大きく設計した。このモデルの特徴は 1) 角型 2) 無酸素銅より 作る 3) 電子ビーム溶接(EBW) 4) rfのカップラーポート除いて rfのコンタクターが存在しない、

等である。Fig.4に空洞の概略を示す。図の中で EB取の矢印で 電子ビーム溶接箇所を示してある。 角型の特質をいかして、精度 の高い空洞が期待できる。真空にひいた時の、ベイン中央部のr方 何の変位は、計算機シミュレーションでは、最大クルかとなる。これは 周波数 tunerの範囲内に収まる小さい値と言える。

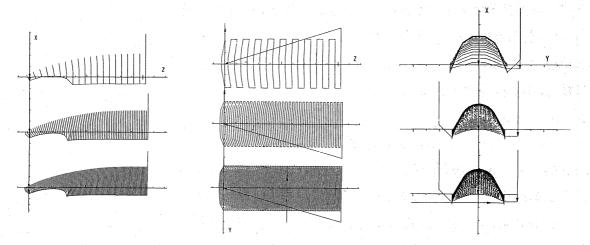
2.2 ベインの製作

コンピューターコード QKEK は、Fig.5に示すベインの形状にて Fig. 5 Geometry of the vane pole. (Xc, Rc, Z)の組を計算する。ベインの各断面は、円弧とそれに 接する2本の直線で表わされており、隣り合う断面の間隔△≥は、 オスモデルでは10umにえらんだ。これは、ベインを表わす曲面の 曲率半径や法線ベクトルを精度良く計算する為である。又、Fig. 6 に示すように、理想曲面からの凹凸 が相殺するような、いわゆる straddling tolerance を選んだ。 3回のNC加工でベインを完 成させる。最終カロエでは、ボールエンドミルの送りピッテは、unit cellの間で変化させている。(0.68~0.79mm)。 Fig.7に、 ボールエンドミルの中心の軌跡を示す。 ベイン加工は、全体で

BALL END MILL desirable


Determination of straddling tolerance. The area of two kinds of hatching are the same.

50un 以下の精度におさまることが推定される。


参考文献

1. T. Kato et al., Proc. 7th Meeting on Linear Accelerators (1982), KEK 82-14, P. 132.

IEEE Trans. Nucl. Sci., (June 1983) to be published.

a) Accelerator section.

b) Radial matching section.

Fig. 7 Trajectories of the center of a ball end mill projected on the three planes. Three kinds of trajectories represent rough, semi-finish and finish cut.