

High Power Test of the DTL Hot Model in JAERI

H. Ino *, N. Ito, Y. Touchi **, K. Hasegawa, J. Kusano, H. Oguri, K. Mukugi ***, and M. Mizumoto

Japan Atomic Energy Research Institute (JAERI) Tokai-mura, Naka-gun, Ibaraki-ken, 319-11, Japan

ABSTRACT

The R&D works for a 10 MeV/10 mA proton linear accelerator are being continued as a part of the OMEGA project. For the Drift Tube Linac (DTL), a 9-cell hot model was fabicated and the high power test was carried out to examine the cooling capability. In this report, the results of the high power test are described.

原研DTLホットモデルのハイパワーテスト

1. はじめに

原研では、OMEGA計画や基礎研究への利用を目的として、加速エネルギー10MeV、平均10mAの技術開発用加速器の要素技術開発 R R F Q についてはビーム加速試験を実施しておりを実施しておりを実施しては、Qマグルの開発[3]、R F 特性試験[4]、及び発熱トランの開発[3]、R F 特性試験[4]、及び発熱トランの開発[3]、R F 特性試験[4]、及び発熱トランでの開発[3]、R F 特性試験[4]、及び発熱トランでの開発[3]、R F 特性試験を見からが表別である。 今回は、 の の R F パワー (デューティ20%、 128k W としたりをホットモデルに対して、アファンを表別での安定運転を実施し、高デューティでの安定運転を実施し、高デューティでの安定運転を実施した。

ここでは、DTLハイパワー試験として、各要素の発熱量の測定、Qマグネット冷却性能評価、ドリフトチューブ(DT)の温度-周波数変化量特性の測定、X線スペクトルの測定、及び連続運転実績結果について報告する。

<u>2. ハイパワー試験概要</u>

図1. にハイパワー試験のセットアップを示す。 DTLに投入されるRFパワーを評価するために、RF源とDTL間にある方向性結合器と、DTLピックアップからの信号をモニタした。また、DTの温度上昇やタンク内の発熱量のに、各DTには熱電対を、各心の温度を行うために、各DTには熱電対を、各心のは連盟抵抗体を取り付けた。さらに、放電の様子を観察した。また、ギャップ間電圧を評価するために、ギャップからのX線エネルギー をHP-Ge検出器を用いて測定した。

表1. DTLホットモデルのパラメータ

キャビティ 共振周波数 : 201.25[NHz] 平均電場強度: 2[MV/m] RF 7 1-71 . 7799 : 20[X] Q。值 (Exp/Cal): 42000 (83%) タソク直 径 : 893 [mm] : 1005.5[mm] DT直 径 : 200[mm] DT t * 7 直 径 : 20[mm] Q マグネット (DT#0,1のみ) **ホローコンタ゛クタ型 (5×5пп²)** 磁場勾配 : 80[T/m] 磁化電流 : 780[A] (DC) ターソ数 : 5.5 **-N&3-1材質: Fe-Co合金

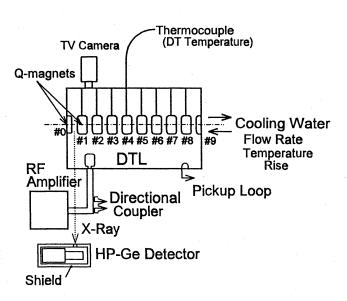


図1. ハイパワー試験セットアップ

^{*)}MITSUBISHI HEAVY INDUSTRIES, LTD.

^{**)}SUMITOMO HEAVY INDUSTRIES, LTD.

^{***)} MITSUBISHI ELECTRIC CORP.

3. ハイパワー試験

3.1 発熱量測定

所定のRFパワー(デューティ20%、128k \mathbb{R} ピーク)におけるDTL内の各要素(DT、端板、チューナー、タンク壁)の発熱量を測定した結果を図2.に示す。測定値は、冷却水の流量と冷却水温度上昇より導出した。図のエラー・バー(測定誤差)は流量について ± 5 %、冷却水温度について ± 0.05 °C、及びRFパワー測定機器について ± 1 %を考慮して求めた。

二次元電磁場計算コードSUPERFISHによる計算値と測定値を比較すると、全発熱量(Total)では、約5%で一致している。各要素では、DT (DT#0~DT#9) において測定値が計算値に対して約10% (DT#0とDT#9は45~70%)高い値を示している。これは、DTとステムの溶接部の表接抵抗やステムとタンクのRFコンタクト部の接触抵抗が原因で発熱が増加したためと思われる。そして、DTでの発熱が増加したためと思われる。そして、DTでの発熱が増加した分、タンク壁(TANK)では測定値が計算値に対して約30%低い値となっている。DTLのQ値はSUPERFISHによる計算値に対し83%(約42000)であるが、このQ値低下の主な原因は、これらの抵抗に起因していると思われる。

3.2 Qマグネット冷却性能

Qマグネットは上流側の2つのDT (DT#0、DT#1)に実装されており、ホローコンダクター型で磁場勾配80T/m (DC励磁)を実現する[3]。このQマグネットの冷却性能を評価するために、RFパワーを投入した状態で、Qマグネットのon及びoff時におけるDTハウジング部の発熱量を測定した。

図3.に示すように、Qマグネットのon/offでDT(DT#0&DT#1)のハウジング部の発熱量に変化はほとんどない(Qマグネット入熱&kWに対し、いずれも50~100W程度の増加)。従って、Qマグネット通電によりホローコンダクターで発生する熱のほとんどは、その中を流れる冷却水によって除熱されており、Qマグネットの冷却性能が良好であることが分かる。

3. 3 DT温度-周波数変化量特性

ホットモデルのDT#3~DT#9は無酸素銅と冷却水路のみからなるダミーDTである。このうちDT#8について、一つのDTの温度上昇(熱膨張)が、モデル全体の共振周波数に与える影響を測定した結果を図4.に示す。実測値は、DT#8の冷却水量を変化させることによりDT#8の温度を変化させ、そのときのチューナーの挿入距離の変化から実効的な周波数変化量を求めている。また計算値は、3次元構造解析コードABAQUSにより流量を変化させたときのDT#8の熱による変位

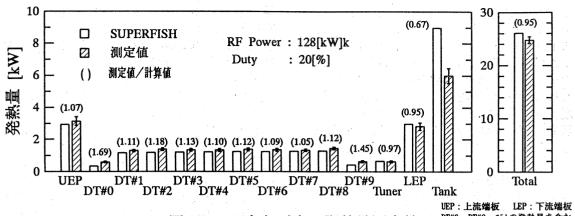
量を求め、その変位量に対する周波数変化量をSUPERFISHコードより求めている。

計算値と測定値はほぼ一致しており、ABAQUS による熱解析、及びSUPERFISHによるRF解析が妥当であることを示している。

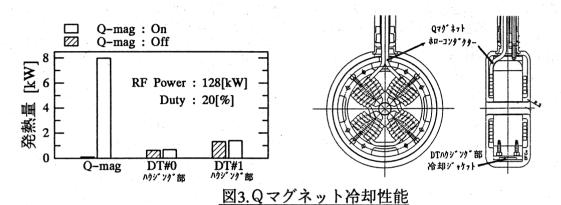
3. 4 X線スペクトルの測定

HP-Ge検出器により、DT#0とDT#1の間の X線スペクトルを測定した結果を図5.に示す。 入力RFパワーが増加するに従い、ギャップ間 の加速電場で加速された電子による制動 X 線 ークは、強度が急激に増加すると共に高エネル ギー側に移っていくことが分かる。このピーク エリアの最高エネルギーがギャップ間電圧に相 当する。図より所定のRFパワー(128kW)に おける X 線エネルギーは約195keVとなるが、これはSUPERFISHコードによるギャップ間電圧の 計算値(197kV)と良く一致している。

3.5 連続運転

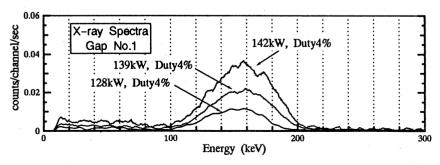

所定のRFパワー(デューティ20%、128kWピーク)を投入し、且つQマグネットを通電した状態で24時間の連続運転を実施したが、大きな放電、真空悪化等もなく、DTLの耐久性、安定性が良好であることを確認した。

4. まとめ


DTLホットモデルについて、所定のRFパワーにおける安定運転を実現し、耐久性も良好であることを確認した。また、DT温度変化に対する周波数変化、及びX線スペクトルの測定も計算との良好な一致を得、設計の妥当性を確認した。今後はこれらの成果を基に、技術開発用加速器のDTLの開発を行う予定である。

参考文献

- [1] J.Kusano et al., "R&D WORKS ON JAERI BTA" Proc. of the 19th Linear Accelerator Meeting in Japan, 1994, Tokai, Japan, p. 69-71
- [2] N.Ito et al.,"The R&D Works on the High Intensity Proton Accelerator for Nuclear Waste Transmulation", Proc. of The 1995 Particle Accelerator Conference and International Conference on High-Energy Accelerators, to be published.
- [3] K.Hasegawa et al., "R&D WORKS OF THE DTL FOR THE BTA IN JAERI", Proc. of the 18th Linear Accelerator Meeting in Japan, 1994, KEK, Tukuba, Japan, p173-175.
- [4] N.Ito et al., "FABICATION AND TEST OF DTL HOT MODEL IN THE R&D WORKS FOR THE BASIC TECHNOLOGY ACCELERATOR (BTA) IN JAERI", Proc. of the 1994 International Linac Conference, 1994, Tukuba, Japan, Volume 1 p.119–121.



UEP:上流端板 LEP:下流端板 DT#0~DT#9:ステムの発熱量を含む 図2.DTL内各要素の発熱量測定結果

計算值(ABAQUS+SUPERFISH) 測定値 0 周波数変化量 [kHz] RF Power: 128[kW] Duty: 20[%] -2 DTハウジング部 35 50 温度 [℃]

図4.DT#8温度-周波数変化量特性

<u>図5.DT#0-DT#1間X線スペクトル</u>