いばらき中性子医療研究センターに おける加速器BNCT施設の建設

小林 仁^{#,A,B,F)}, 栗原 俊一^{A)}, 吉岡 正和^{A)}, 松本 浩^{A)}, 松本 教之^{A)}, 熊田 博明^{B)}, 櫻井 英幸^{B)}, 田中 進^{B)}, 松村 明^{B)}, 菅野 東明^{C)}, 柱野 竜臣^{C)}、中島 宏^{D)}, 中村 剛実^{D)}, 平賀 富士夫^{E)}, 大場 俊幸^{F)}, 小林 創^{F)}, 名倉 信明^{F)}、黒川真一^{A,G)}、中本崇志^{G)}、Tilen Zagar ^{G)}

^{A)} KEK, Accelerator Research Organization
 ^{B)} Tsukuba University
 ^{C)} Mitsubishi Heavy Industries, LTD.
 ^{D)} JAEA, Japan Atomic Energy Agency
 ^{E)} Hokkaido University

 ^{F)} Nippon Advanced Technology CO., LTD.
 ^{G)} Cosvlab

Ibaraki prefecture

iBNCT の建設サイト: いばらき中性子医療研究センター内 (J-PARC サイト近く)

J-PARC の加速部をベース: ビームダイナミクス

現在の加速器室と照射室-標的

主要パラメータの決定

基本方針: Hospital & Patient Friendly Guiding Principle: Very low residual radio-activity. エネルギーと標的材料が最重要パラメータ その他の材料の選択等でも注意深く低放射化の 優先度を高く

IAEA照射野での中性子強度指標 -原子炉ベース-

熱外中性子 (0.5eV-10keV): 1X10⁹n/(s·cm²)

→治療時間の観点から(1回で終了。30分内外) 加速器の観点からはかなりのハイパワー ビームが必要

当初基本的なモデレータ系を想定しての見積もりから、 8MeV-80kW程度必要と判断

プロトンエネルギーと中性子発生

 ${}^{9}Be(p,n){}^{9}B$ Neutron energy spectrum for various production angle

Cooling Time(day)

構造材**の放射化検討**

<u>コリメータ側の光子空間線量率分布</u>

患者・医療従事者のエリアでは、1年間の使用後も急速に10 µ Sv/h以下

個々の機器の状況

ロングパルス-高繰り返しモジュレータの開発

要求仕様

パルス幅: 1ms 電圧: -90kV 電流: 30A 繰り返し: 200Hz パルス平坦度: 0.1%

コンデンサバンク小型化技術

サグ補償回路でサイズを1/10程度に

C:コンデンサバンク容量、R:負荷抵抗値

KEK第27回技術部会 M. Akemoto

出力の平坦度調整

簡便なDROOP補償: タイミング調整のみ

イオン源チューニング

加速管の温度制御

ITEMS	UNIT	BNCT		J-PARC	
		RFQ	DTL	RFQ	DTL
LENGTH	m	3.1	3.004	3.1	9.921
BEAM CURRENT	mA	50	50	50	50
BEAM PULSE WIDTH	msec	1.0	1.0	0.6	0.6
INJECTION ENERGY	MeV	0.05	3	0.05	3
OUTPUT ENERGY	MeV	3	8	3	19.716
PEAK RF WALL LOSS POWER	MW	0.34	0.32	0.34	1.06
PEAK BEAM POWER	MW	0.15	0.25	0.15	0.84
TOTAL RF POWER (@50mA)	MW	0.49	0.57	0.49	1.90
Repetition Rate	Hz	200	200	50	50
AVERAGE BEAM POWER	kW	80		50	
AVERAGE RF WALL LOSS POWER/m (RFQ+DTL)	kW	21.6 (132)		3.2 (42)	
COOLING WATER FLOW RATE @ $\Delta T=0.1^{\circ}C$	L/min.	3,000 (19,000)		460 (6,000)	
COOLING WATER FLOW RATE @ ΔT= <mark>10°C</mark>	L/min	30 (190)			

 $\Delta T = 14.3 \times \frac{kW}{L/\min} \quad [^{\circ}C], \qquad 1[Joul] = 0.239[Cal]$

WATER SPECIFICATION FOR KLYSTRON TUBE (@TOSHIBA) 1) pH: 7-8, 2) OXYGEN DENSITY: 1-6 ppm, 3) SPECIFIC RESISTANCE: >10kΩ·cm, 4) PARTICLE SIZE: <50µm

MAR.012012 H. MATSUMOTO

加速管の温度制御試験: FROM 30°C TO 60°C

JULY122014 H. MATSUMOTO

Target Failure: ブリスタリング

実機大標的の製作

ベリリウム標的

2014/8/18

第1期 10万分の1の パワー申請

標的試料の製作と試験

熱伝導率、引っ張り試験他

ms

標的温度のシミュレーション

Temperature: surface to cooling pipe

10パルスにおける入射熱量の時間変化(下段) フルパワー時、万がービーム拡大系が止まると 10パルス(50ms)で700度を超える:時間的余裕あり

EXAMPLE OF CONTROL PANEL USING CSS (Control System Studio)

KEK700keVコッククロフトウォルトン In situ observation of blistering

Laser Light Reflectivity Measurement (LRM)

Blistering observation using reflection laser light

まとめ

- >2014年7月7日に放射線管理区域に設定
 >加速管のコンデショニング開始
- >概ね順調に動いているが立ち上げ特有の問題 もあり