SPring-8線型加速器に於ける六電極BPMを使用した ツイスパラメータ測定と整合

柳田謙一、鈴木伸介、花木博文公益財団法人高輝度光科学研究センター

- はじめに(何故BPMによるエミッタンス測定か?)
 円形断面BPMの信号電圧差分と各次モーメントの関係
 信号電圧差分に於ける五次モーメントまでの寄与
 実効開口半径(Effective Aperture Radius)
 全体較正(Entire Calibration)
 Qスキャンによるエミッタンス測定
- ●まとめと今後の課題

●はじめに(何故BPMによるエミッタンス測定か?)

- ・SPring-8線型加速器は1GeV電子ビームを供給(NS、Sy)
- ・ビーム振分偏向電磁石直前でBT系ツイスパラメータ整合(LAM24、PASJ4)
- ・以前はワイヤスキャナーやプロファイルモニタ(PM)を使用
- ・ビーム形状により信号強度の飽和・ノイズレベルまでの低下が起こる
- ・機器のゲイン調整が大変面倒
- •精度向上のため機器数増→測定時間増(ビーム破壊型のため)

⇒日々の計測には不向き(時間が掛かる・ボタン1押しで測定完了でない)

プロファイルモニタによるビーム形状の測定(8ビット処理後)

- ●はじめに(何故BPMによるエミッタンス測定か?)続き
- ・以前からBPMを使用したビーム非破壊での エミッタンス(ビームサイズ)測定の報告あり
- SPring-8LINAC1GeVで同様な測定は可能かどうか?
 2009年頃からデザインスタディを開始
 特に手持ちの処理回路での分解能が重要
- ・検討の結果→多分、エミッタンスの測定は可能
 →まとめたものを<u>PRSTAB(2012年)</u>で発表
- ・六電極BPM本体の詳細設計 <u>PASJ8(2011年)</u>で報告
- ・六電極BPMシステムの設計 <u>PASJ9(2012年)</u>で報告
 - 【処理回路更新、DIボード更新、DB更新、
 - 全体較正の概念、実効開口半径の概念、
 - 二次相対モーメントPg2測定とプロファイルモニタとの比較】
- 三次モーメントの影響 <u>PASJ10(2013年)</u>で報告

●円形断面BPMの信号電圧差分と各次モーメントの関係

そもそも何故、信号電圧差分を高次モーメントを含む表記とするのか? $\pi/6$ 2012年当時 一次まで

Electrode

Electrode6

18mm

Electrode5

25mm

※全体較正時 S1から計算されるQ1とS1'から計算されるQ1を

一致させるようにプログラムして計算すると⇒計算が暴走(必ず再現) ※S1と及びS1'で個別に全体較正に掛けると異なるバランス係数値に? ※本来相対モーメントは一定だが、中心より外れると一定値からズレる ※ビーム形状が縦長と横長でビーム位置が異なる(PMでは同じ位置) ニ次モーメント以上の寄与が存在する!!

●円形断面BPMの信号電圧差分と各次モーメントの関係続き 2013年当時 三次まで

※全体較正時 S1から計算されるQ1とS17から計算されるQ1が一致 三次モーメントの寄与がそれぞれ逆方向だった ※ビーム形状(縦長と横長)でビーム位置が異なる事は無くなった ※本来相対モーメントは一定だが、中心より外れると一定値からズレる 中心より位置が±3mm程度の範囲内ならズレない

位置が±3mmより大でも問題が起きないように五次まで含める

●円形断面BPMの信号電圧差分と各次モーメントの関係続き 2014年 三次までから五次までにするのに手間はあまり変わらない

$$C_{1} = \frac{V_{1} - V_{3} - V_{4} + V_{6}}{V_{1} + V_{3} + V_{4} + V_{6}} \approx \frac{2P_{1}}{R_{C1P1}} \left(1 - \frac{2P_{2}}{R_{C1P2}^{2}} + \frac{4P_{2}^{2}}{R_{C1P2}^{4}} + \frac{2P_{4}}{R_{C1P4}^{4}} \right) + \frac{2P_{3}}{R_{C1P3}^{3}} - \frac{2P_{5}}{R_{C1P5}^{5}}$$

$$S_{1} = \frac{V_{1} + V_{3} - V_{4} - V_{6}}{V_{1} + V_{3} + V_{4} + V_{6}} \approx \frac{2Q_{1}}{R_{S1Q1}} \left(1 - \frac{2P_{2}}{R_{S1P2}^{2}} + \frac{4P_{2}^{2}}{R_{S1P2}^{4}} + \frac{2P_{4}}{R_{S1P4}^{4}} \right) + \frac{2Q_{3}}{R_{S1Q3}^{3}} + \frac{2Q_{5}}{R_{S1Q3}^{5}}$$

$$C_{2} = \frac{V_{1} + V_{3} + V_{4} + V_{6} - 2(V_{2} + V_{5})}{V_{1} + V_{3} + V_{4} + V_{6} + 2(V_{2} + V_{5})} \approx \frac{2P_{2}}{R_{C2P2}^{2}} \left(1 + \frac{2P_{2}}{R_{C2P2}^{2}} \right) - \frac{2P_{4}}{R_{C2P4}^{4}}$$

$$S_{2} = \frac{V_{1} - V_{3} + V_{4} - V_{6}}{V_{1} + V_{3} + V_{4} + V_{5} - V_{6}} \approx \frac{2Q_{2}}{R_{S2Q2}^{2}} \left(1 - \frac{2P_{2}}{R_{S2P2}^{2}} \right) + \frac{2Q_{4}}{R_{S2Q4}^{4}}$$
Electrode Ele

Electrode6

Electrode4

Electrode5

・RC,SmPQ,nは実効開口半径 単位は[mm]

●円形断面BPMの信号電圧差分と各次モーメントの関係続き ・n次絶対モーメントP,QnのC,Smへの寄与は実効開口半径で与えられる 実効開口半径が小さいほど寄与は大きい

•BPMの開口半径をR RとRC,SmPQ,nはほぼ同じ大きさ R≦RC,SmPQ,n 実効開口半径 Rc. smP. gn [mm]

Rc1P1	18. 688	Rs1p2	23. 155	Rc1p4	18.029
Rc1P2	23. 155	Rs1q3	16. 570	Rs202	17.594
Rc1P3	∞	Rs1p4	19.953	Rs2p2	23.155
Rc1P4	19.953	R \$1Q5	19. 531	R s2Q4	17.392
Rc1p5	17.499	Rc2p2	18.906	Rs3Q3	16.570
Rs1Q1	32. 368	Rc2p2'	32. 746	R	16.000

- Rs1Q3は16mm程度 電極位置で電場がcosn πの強度
- RC1P3は無限大 電極位置で電場がsinn πの強度
- •電極見込角30°→0°ならばRs3Q3 16.570mm→16mm

 ●円形断面BPMの信号電圧差分と各次モーメントの関係続き
 ・さて、P,Q1~P,Q5の値はどのようにして得られるのか?
 実際に測定値として得られるのはP1, Q1, Pg2, Qg2, Qg3の五つのみ 測定出来ないモーメントは無視すると

 $P_1 = p_{G1},$ $Q_1 = q_{G1},$ $P_2 = p_{G2} + P_{g2},$ $Q_2 = q_{G2} + Q_{g2},$ $P_{3} = p_{G3} + 3b_{G}a_{g2}^{2}\cos(\beta_{G} + 2\alpha_{g2}), \quad Q_{3} = q_{G3} + 3b_{G}a_{g2}^{2}\sin(\beta_{G} + 2\alpha_{g2}) + Q_{g3},$ $P_4 = p_{G4} + 6b_G^2 a_{g2}^2 \cos(2\beta_G + 2\alpha_{g2}), \quad Q_4 = q_{G4} + 6b_G^2 a_{g2}^2 \sin(2\beta_G + 2\alpha_{g2}),$ $P_{5} = p_{G5} + 10b_{G}^{3}a_{g2}^{2}\cos(3\beta_{G} + 2\alpha_{g2}), Q_{5} = q_{G5} + 10b_{G}^{3}a_{g2}^{2}\sin(3\beta_{G} + 2\alpha_{g2}),$ $p_{Gn} = b_G^n \cos n\beta_G$, $q_{Gn} = b_G^n \sin n\beta_G$, $P_{g2} = a_{g2}^2 \cos 2\alpha_{g2},$ $Q_{g2} = a_{g2}^2 \sin 2\alpha_{g2},$ 上記P,Q1~P,Q5を信号電圧差分式に入れて

全体較正及びエミッタンス測定を行った

全体較正 六電極BPM内で右図のように ビームを上下左右に振り データを取得する 赤点はマッピング点

BPM_LS_1内でのマッピング点

Measured Relative Attenuation Factors [dB	3]
---	----

	Ch 1	Ch 2	Ch 3	Ch 4	Ch 5	Ch 6
BPM_LS_1	0.00	2.33	0.27	-0.59	0.85	-0.72
BPM_LS_8	0.00	0.57	0.57	0.05	-0.12	0.31
BPM_LS_2	0.00	1.50	0.73	0.29	2.08	0.54
BPM_LS_9	0.00	0.15	0.19	0.86	0.67	0.17

●全体較正の例(デモンストレーションとして)

P1(上)及びQ1(下)のシミュレーション(左)と実測値(右)

●全体較正の例(デモンストレーションとして)

 $P_2(L) 及 UP_{g_2}(r) の シミュレーション(左) と実測値(右)$

●全体較正の例(デモンストレーションとして)

Q2(上)及びQg2(下)のシミュレーション(左)と実測値(右)

●全体較正の例(デモンストレーションとして)

Q3(上)及びQg3(下)のシミュレーション(左)と実測値(右)

●Qスキャンによるエミッタンス測定

- ・2013年夏に4台の六電極BPMを4台のQMに挟み込む形で設置 各BPM電極位置は各QM上流側ヨーク端面から約70mm上流 ・Qスキャンの手法
 - QM4台電流値を変化させながらのBPM4台のPg2_Mを測定(計11セット) PM_LS_1地点でのエミッタンス&ツイスパラメータを仮定

 - Pg2_cMとPg2_Mの差分二乗和(11セット×4台=44点)が最小となる
 - PM_LS_1地点でのエミッタンス&ツイスパラメータを探す

各セットはIset=(QM_LS_1電流値, QM_LS_2電流値, QM_LS_10電流値, QM_LS_11電流値)[A]で区別

Parameter	Horizontal	Vertical
$\varepsilon \ [\pi \mathrm{mm} \cdot \mathrm{mrad}]$	0.168 ± 0.002	0.299 ± 0.001
$\beta \ [{ m m}]$	14.7 ± 0.1	5.7 ± 0.2
lpha	2.25 ± 0.04	0.50 ± 0.03

Deduced Emittances and Twiss Parameters

Qスキャンによるエミッタンス測定続き

●Qスキャンによるエミッタンス測定続き

●Qスキャンによるエミッタンス測定続き

σ及びPg2を長手方向に表示したグラフ

Qスキャンによるエミッタンス測定続き Qスキャンと同時にPMでのビーム形状を確認した→PMの方が若干小さい e Moment P_{g2} [mm²] 250 ● σ_{н м} by PM g2_C • P_{g2 M} by BPM • σ_{V_M} by PM ·σ_{v_c} 1.5 מ מ 200 ize 150 ٥ 2nd-Order Relati<mark>v</mark> Beam ^{0.5} 100 -1 _=(-10, 0, 0 ,0) [A] 50 PM LS 2 n -2 6 7 8 9 10 5 Iset = (-10, 0, 0, 0)11 Distance from PM_LS_1 [m] 0 $I_{set} = (-10)$ (0) 0 0 0) 0 0 σ set= 250 2.5 250 [mm²] by P - D g2_C by BPM • $\sigma_{_{V_{-}M}}$ by PN • P Moment P_{g2} [r 2 2 200 200 um] 1.5 عe م =(-50, 32.5, -5 ,5) [A] SET 150 150 Beam S<mark>iz</mark>i 2nd-Order Relativ<mark>e</mark> 100 100 0.5 -1 50 50 PM LS 2 PM LS 1 0 -2 Iset = (-50, 32.5, -5, 5)2 3 4 5 6 7 8 9 10 11 0 1 Iset = common 0 Distance from PM_LS_1 [m] 0 Profile@PM LS 1 Iset=common [A] set = (-50)32 32 -b5) 250

200

150

100

50

Ω

[A]

65

PM LS 2

lset=(-9()

Iset = (-90, 65, -10, 10)

Proti

●まとめと今後の課題

・二次相対モーメントを正確に測定する為、信号電圧差分を五次のモーメントまで含む表記とした。各モーメントの寄与は実効開口半径で表される。
・全体較正に就いて、ほぼ理論(予想)通りの測定値が得られ、全体較正の手法が正しく且つ有用であることが確認された。

・Qスキャンの手法により、六電極BPM のみの使用によりビームエミッタンス 及びツイスパラメータが測定された。 ビームエネルギー値による不確定性 要因もあるが、それは今後の課題で あろう。

・ツイスパラメータ整合はGUIを使用して行う予定で、現在準備を進めている
 →実運用化

ken Study 6	BPM ST Mag Change	F
File Update Time 2014/06/05 14:14:47	2014/06/05	14:15:02
ST Name Start I [A] End I [A] Set Points LSBT_1 H -1.000 3.000 4 LSBT_1 V -2.000 0.000 4 LSBT_2 H 3.000 -1.000 4 LSBT_2 V 0.000 -2.000 4 LSBT_2 V 0.000 -2.000 4	4 2 0 -2 -2 Jun 5 14:10:31 14:12:01 14:13:31	Jun 5 14:15:01
LSBT_1_H I LSBT_2_H I START Period[s] -2.257 0.226 30 LSBT_1_V I LSBT_2_V I stop -1.667 0.943 stop Scale Manual V ± 4.000	4 1 1 1 1 1 1 1 1 1 1 1 1 1	Jun 5 14:15:01
BPM Name posx [nn] posy [nn] pg2 [nn^2] LSBT_1 0.072 0.105 17.04 LSBT_8 0.029 0.519 -1.02 LSBT_2 0.044 -0.260 13.74 LSBT_9 0.233 0.077 -0.131	30 15 0 -15 -30 Jun 5 Jun 5 14:10:31 14:12:01 14:13:31	Jun 5 14:15:01

自動的に全体較正を行うGUI(測定のみ計算は別)