PASJ2016 FSP015

九州大学加速器・ビーム応用科学センターの現状報告 2016

STATUS REPORT OF CENTER FOR ACCELELATOR AND BEAM APPLIED SCIENCE OF KYUSHU UNIVERSITY IN 2016

米村祐次郎^{#, A)}, 有馬秀彦^{A)}, 池田伸夫^{A)}, 石橋健二^{A)}, 魚住裕介^{A)}, 執行信寬^{A)}, 野呂哲夫^{B)}, 森田 浩介^{B)}, 寺西高^{B)}, 若狭智嗣^{B)}, 藤田 訓裕^{B)}, 坂口聡志^{B)}, 岩村龍典^{B)}, 中山久義^{C)}, 高木昭^{C)}, 森 義治^{D)}

Yujiro Yonemura^{#, A)}, Hidehiko Arima^{A)}, Nobuo Ikeda^{A)}, Kenji Ishibashi^{A)}, Yusuke Uozumi^{A)},

Nobuhiro Shigyo^{A)}, Tetsuo Noro^{B)}, Kosuke Morita^{B)}, Takashi Teranishi^{B)}, Tomotsugu Wakasa^{B)}, Kunihiro Fujita^{B)},

Satoshi Sakaguchi B), Tatsunori Iwamura B), Hisayoshi Nakayama C), Akira Takagi C), Yoshiharu Mori D)

^{A)} Faculty of Engineering, Kyushu University

^{B)} Faculty of Science, Kyushu University

C) KEK

D) Kyoto University

Abstract

The construction of a new accelerator facility has been completed at Center for Accelerator and Beam Science of Kyushu University. The facility consists of the 8-MV tandem accelerator and the 150-MeV FFAG accelerator. The new RF ion source of the tandem accelerator has been installed and commissioned. The initial commissioning of the low-energy beam line for the accelerator mass spectrometry has been completed. The construction of the extraction beam line of the FFAG accelerator has been started in May 2016. In this paper, the present status of the tandem accelerator and the FFAG accelerator are reported.

1. はじめに

九州大学加速器・ビーム応用科学センターでは、 FFAG加速器と8 MV タンデム静電型加速器を利用した 加速器施設の整備が進められている^{[1][2]}。タンデム加速 器・実験棟では大型散乱槽ビームラインと AMS ビームラ インが整備され、昨年7月から研究・教育での利用が行 われている。FFAG加速器棟では、高エネルギー加速器 研究機構から譲渡・移設された電磁石等を利用し、取出 しビーム輸送ラインの建設が行われている。本発表では、 FFAG加速器とタンデム加速器の現在の整備状況につ いて報告する。

2. 加速器施設と整備計画の概要

九州大学ではビームを利用した教育および原子核科 学、医療応用、基礎科学などにおけるビーム応用研究を 推進するために、伊都キャンパスへの移転を機に、コック クロフト加速器実験室、原子核実験室および量子線照 射分析実験施設を統合した加速器・ビーム応用科学セ ンターを発足させた。箱崎キャンパスの加速器や実験装 置は老朽化が進み、移設が困難な状況であったため、 新キャンパスにおいて新しい加速器施設の整備が進め られることになった。

加速器施設の整備計画は2期に分けて進められた。 第1期の整備計画ではFFAG加速器を主加速器とした 工学系の加速器施設の整備が行われ、2008年7月に 建屋が完成した。第2期の整備計画ではタンデム加速 器を主加速器とした理学系の加速器施設・実験棟の建 設が行われ、2014年3月に建屋が完成した。同年9月 に建屋の放射安全に関する施設検査に合格した後、タンデム加速器のビームを FFAG 加速器と各実験室に供給するビームラインの整備を行い、2015年6月に施設検査を再度受検し、合格した。

箱崎キャンパスのタンデム加速器は、加速器・ビーム 加速器センターの建屋完成に伴い、2015 年 12 月に シャットダウンした。2016 年 9 月には放射化物の処理が 完了し、管理区域を解除する予定である^[3]。

Figure 1: Schematic view of Center for Accelerator and Applied beam science in 2016.

[#] ynmr@nucl.kyushu-u.ac.jp

PASJ2016 FSP015

Figure 1 に加速器施設の概略図を示した。加速器施設は FFAG 加速器棟とタンデム加速器棟から構成されている。タンデム加速器で加速されたビームは FFAG 加速器室、低エネルギーイオン室、核科学実験室に供給される。タンデム加速器棟では、低エネルギーイオン室のAMS ビームラインと核科学実験室の大型散乱槽を用いて、研究・教育でのビーム利用が前年度から開始され、現在、本格的なビーム利用へ向けた準備が進められている。また、FFAG 加速器棟では、FFAG 加速器のビーム利用のための取出しビームラインの建設が行われている。

3. タンデム加速器の整備状況

タンデム加速器は 2014 年 9 月に施設検査に合格し、 10 月からはタンデム加速器室において 14 MeV InA の ビームが使用可能になった。その後、実験室へのビーム ライン拡張と新たなビーム核種(重陽子・重イオン)を増 やすための承認を 2015 年 2 月に受け、6 月に施設検査 に合格した。同年 7 月から研究・教育での利用が開始さ れた。Table 1 にタンデム加速器の設計パラメータを示す。

Table 1: Parameters of Tandem Accelerator

Accelerator Type	Horizontal Tandem Van de Graaff
Model	NEC Pelletron (8UDH)
Terminal Voltage	7 MV (max. 8MV)
Accelerator Tank	Diameter: 3.0 m Length: 13.6 m
Insulation Gas	SF ₆ (pressure: 0.6 MPa)
Ion Source	Sputter Ion Source (NEC MC-SNICS) RF Ion Source (NEC Alphatross)
Injection Voltage	-70 kV
Beam	p, d, H.I.
Current	1 nA
Terminal Stripper	C Foil and Ar Gas
Charging Device	Double Pellet Chains (Current: 150 µA×2)

タンデム加速器では、マルチカソード型スパッタイオン 源(NEC 社製 MC-SNICS)に加えて、新たに荷電交換型 RF イオン源(NEC 社製 Alphatross)を整備し、不安定核 生成のテストを行った。また、ガスストリッパーを更新し、 ストリッパーカナールを大口径化した。今後、共鳴散乱 による不安定核の核構造データを取得する実験が計画 されている。

低エネルギーイオン室に設置されている AMS ビーム ラインでは、静電デフレクターの整備と全系の動作試験 を行い、エミッタンス測定、エネルギー校正、ガスストリッ パーの動作テストを行った。核科学実験室では、中性子 物理等でのビーム利用を目的とした新たなビームライン (45 度コース)の整備が計画されている。今年度末を目 標にタンデム加速器のターミナル電圧を8 MV へ昇圧し、 最大ビーム強度を1µA へ増強するための変更申請を行 い、本格的なビーム利用を開始する予定である。

4. FFAG 加速器の整備状況

工学系の加速器施設は入射器サイクロトロンと FFAG 加速器によって構成されている。タンデム加 速器から重イオンビームを入射するためのビーム入 射ラインが2015年3月に整備され、現在、重イオン ビーム入射のための準備が進められている。また、 FFAG 加速器のビーム利用へ向けて、2016年1月に 高エネルギー加速器研究機構から譲渡・移設された 電磁石を利用して、取出しビームラインの建設が行 われている。Table 2 と Figure 2に FFAG 加速器の設 計パラメータと FFAG 加速器の機器配置を示した。

Figure 2: Schematic view of FFAG accelerator.

Table 2: Design Parameters of 150 MeV FFAG

Туре	Radial sector (DFD triplet)
Number of Cells	12
Proton Energy	$10 \rightarrow 125 \text{ MeV} (\text{Max. } 150 \text{ MeV})$
Average radius	4.47 - 5.20 m
Repetition	100 Hz (2 Cavities)
Beam Current	1.5 nA
Betatron Tune	3.61 (Horizontal)
(Injection Energy)	1.46 (Vertical)

FFAG 加速器からのビーム取出しは、取出しキッカー電磁石と取出しセプタム電磁石を用いた速い取出し法で行われる。Figure 2 に示す通り、取出しキッカーと取出しセプタム電磁石は4セル(ベータト

ロン振動の位相差が約 90 度)の位置に設置されている。

入射器から入射されたビームは加速と共に半径外 側へ移動し、取出し軌道に到達する。ビームは取出 しキッカー電磁石と取出しセプタム電磁石によって 外側に偏向され、FFAG 電磁石の磁石中央付近から 加速器外に取り出される。2016年6月までに取り出 しキッカー電磁石と取出しセプタム電磁石の運転試 験を行い、要求仕様を満たしていることを確認した。 Figure 3 にビーム取出しシステムのタイミング チャートを示す。Table 3 と Table 4 に取出しキッカー 電磁石と取出しセプタム電磁石の仕様を示 した。

Figure 3: Timing chart of beam extraction system.

Table 3: Design Parameters	s of Extraction Kicker
----------------------------	------------------------

Magnet Type	3 air core coils
Magnet length	600 mm
Gap Width / Height	70 mm / 24 mm
Output waveform	Square wave
Switching device	E2V CX1175
Rise Time	160 ns (5 – 96%)
Flat Top	140 ns
Flat Top Charging Voltage	140 ns 40 kV

Table 4: Design Parameters of Extraction Septum

Magnet Type	Eddy current type
Output waveform	half-sine wave
Magnet Length	460 mm
Gap Width / Height	70 mm / 23 mm
Switching device	MITSUBISHI
	FT1500EY-24
Wave length	155 µs
Peak current	8600 A
Charging Voltage	3.7 kV

FFAG 加速器から取り出されたビームは、取出し ビームラインによってビームダンプまで輸送される。 取出しビーラインはFigure4に示す通り、1台の四極 永久磁石(PMQ1)、4台の四極電磁石(QM5、QM6、 QA3RE、QA6RE、QD16)と1台の偏向電磁石 (BS2DP.2)によって構成されている。QM5、QM6、 PMQ1以外の電磁石は高エネルギー加速器研究機構 から譲渡・移設されたもので、トリスタンのメイン リングや入射蓄積リングで用いられていた電磁石で ある。^[4]。現在、電磁石のアライメントと冷却水配 管と電気配線等が行われている。

Figure 4: Schematic view of extraction area.

5. まとめ

九州大学加速器・ビーム応用科学センターでは、 FFAG 加速器のビーム実験と並行して、8 MV タンデム 静電型加速器の整備が進められている。タンデム加速 器棟では、本格的なビーム利用のための準備が整いつ つあり、2016年度中にターミナル電圧を8 MV へ昇圧し、 最大ビーム強度を1µA へ増強するための変更申請を行 う予定である。FFAG 加速器棟では、FFAG 加速器の ビーム利用へ向けて、取出しビームラインの整備が進め られている。

参考文献

- [1] Y. Yonemura *et al.*, Proc. of the 12th PASJ, Tsuruga, Japan, August 5-7, 2015, pp.354-356.
- [2] T. Teranishi *et al.*, Proc. of the 10th PASJ, Nagoya, Japan, August 3-5, 2013, pp.310-312.
- [3] 第 29 回「タンデム研究会及びその周辺技術の研究会」プロシーディングス、掲載予定.
- [4] KEKB B-Factory Design Report, KEK Report 95-7, August 1995.