MOOM04

J-PARC におけるミューオン g-2/EDM 精密測定実験のための ミューオンリニアック

近藤恭弘、長谷川和男、伊藤崇、Artikova Sayyora (原子力機構) 大谷将士、三部勉、内藤富士雄、吉田光宏 (高エネルギー加速器研究機構) 北村遼 (東大)、岩下芳久 (京大)、岩田佳之 (放医研)、 林崎規託 (東工大)、齊藤直人 (J-PARCセンター)

内容

- **1**. RFQ
- 2. IH-DTL
- 3. DAW
- 4. DLS

世界初のミューオンリニアック実現に向けた

各加速構造の開発状況と、リファレンス粒子シミュレーション

ミューオンg-2/EDMの精密測定

- ミューオン 電子の200倍の質量を持つレプトン
 - 未知の粒子への感度が高い 基礎的物理量(異常磁気モーメントや電気双極子モーメント)の 精密測定
- これまでの実験
 - 2次ビームをそのまま利用
 - $-\sim$ 1000 π mm mrad

- J-PARC E34
 - 超低速ミューオンをリニアックで加速
 - $-\sim 1 \pi$ mm mrad

エミッタンス 1/1000 の画期的ビームで 新しい物理を探索 第13回日本加速器学会年会@幕張メッセ国際会議場

ミューオンリニアックの構成

@ J-PARC MLF ミューオン施設 Hライン

超低速ミューオン生成

RFQ入り口での粒子分布

RFQ

- 初期段階ではJ-PARCリニアック用を使用
- ヴェーン間電圧を粒子の質量でノーマライズ
- RFQ自体は準備完了

APF型IH-DTL

IH主要パラメータ	
周波数	324 MHz
空洞長	1.3 m
入射エネルギー	0.34 MeV
出射エネルギー	4.5 MeV
シャントインピーダンス	92 MΩ/m
空洞消費電力	250 kW

• H-mode + APF (Alternative Phase Focusing) 高シャントインピーダンス

- 重イオンリニアックでの成功 HIMAC
- ・ ゼロ電流のミューオンリニアックにも適用可。ただし周波数は1.6倍
 ⇒ 大谷et. al., ポスター発表 TUP017

CST Micro Wave Studioによるセル形状設計

DAWセクション主要パラメータ					
周波数	1296 MHz				
全長	16 m				
入射エネルギー	4.5 MeV				
出射エネルギー	40 MeV				
加速勾配	5.6 MV/m				
モジュール数	15				
空洞消費電力	4.5 MW				

- 単純な構造
- 高い結合度 加速効率
- セル設計 ビーム設計は
 完了。コールドモデル測定中

2016/8/8

DAWセクションのビーム力学設計

- PARMILAで縦方向設計
 - 同期位相 -30°
 - Transit time factorは SUPERFISHで計算
 - TRACE3Dで横方向も
 含めた周期構造を設計
 - 1収束周期での位相進 み < 90°
- PARMILAで
 粒子シミュレーション

DAW出口での粒子分布(PARMILAシミュレーション)

円盤装荷型(DLS)進行波リニアックの ビーム力学設計

DLSセクション主要	ミパラメータ	L-Sand Roceletator Sciences F = 1295.3995 WE	L-Fand Accelerator Prioritore F = 1296, 1961	
周波数	1296 MHz	10	90 - 90 -	
入射エネルギー	40 MeV		10	
出射エネルギー	212 MeV	30 - 70 -	10 - m -	
セル長	βλ/3 (2π/3 mode)			
加速勾配	20 MV/m	Short-Short	Open-Open	
同期位相	-10°	$oldsymbol{E}_{TW}(oldsymbol{r},t) = \left[oldsymbol{E}_{SS}(oldsymbol{r},\omega) + ioldsymbol{E}_{OO}(oldsymbol{r},\omega) ight] e^{i\omega t}$		
加速管数	4	$\boldsymbol{H}_{TW}(\boldsymbol{r},t) = [\boldsymbol{H}_{OO}(\boldsymbol{r},t)]$	$\left[\omega ight) - i oldsymbol{H}_{SS}(oldsymbol{r},\omega) ight] e^{i \omega t}$	

- GPTへの外部電場をSUPERFISHで計算
- 異なる境界条件の定在波を位相をずらして重畳
- http://www.yamamo10.jp/yamamoto/study/accelerator/GPT/ TW_structure/index.php

ミューオンリニアック出口での粒子分布

2016/8/8

End to end シミュレーションまとめ

	入射	RFQ	IH	DAW	DLS
粒子シミュレーション コード	GEANT4	PARMTEQM	GPT	PARMILA	GPT
透過率 (%)	87	94.7	99.9	99.5	99.9
崩壊ロス(%)	17	19	2	4	1
ε _{n, rms, x} (π mm mrad)*	0.38	0.30	0.32	0.32	0.32
ε _{n, rms, y} (π mm mrad)*	0.13	0.17	0.20	0.21	0.25
* 規格化rmsエミッタンス					

2016/8/8

ミューオン加速試験用低速 μ⁺ Mu⁻源の開発

<u>Time of Flight 分布</u>

- 2016年2月 MLF D2エリアにてビーム試験
- RFQで受け入れ可能なµ⁺の生成を確認
- Hラインが整備されしだい、RFQによる加速試験
 ⇒ 北村et. al., ポスター発表 MOP050

まとめ

- 世界初のミューオンリニアック実現を目指し、
 ビームカ学、空洞設計を行っている
- 超低速ミューオン生成からリニアック出口までの、最初のリファレンスデザインが完成
- ・ビーム加速試験を計画中。まずはRFQまで