PASJ2016 MOP018

超伝導加速空洞表面処理設備の検証試験

COMMISSIONING OF SURFACE TREATMENT FACILITY FOR SRF CAVITY

宮本明啓^{#, A)}, 柳澤剛 ^{A)}, 原博史 ^{A)}, 沖平和則 ^{A)}, 仙入克也 ^{A)} 加古永治 ^{B)}, 梅森健成 ^{B)}, 許斐太郎 ^{B)}

Akihiro Miyamoto^{#, A)}, Takeshi Yanagisawa^{A)}, Hiroshi Hara^{A)}, Kazunori Okihira^{A)}, Katsuya Sennyuu^{A)}

Eiji Kako^{B)}, Kensei Umemori^{B)}, Taro Konomi^{B)}

^{A)} Mitsubishi Heavy Industries Mechatronics Systems, LTD.

^{B)} High Energy Accelerator Research Organization

Abstract

Surface treatment of inner surface of Superconducting RF cavity (Hereinafter referred to as SRF cavity) is important to achieve high accelerating gradient and Q value. In order to perform this process by ourselves, our company ^A) has installed facilities for surface treatment of SFR cavity. Facilities consist of chemical polishing equipment, ultrasonic cleaning equipment, ultra-pure water system, high pressure water rinsing equipment and clean room. As a commissioning of these facilities, we performed trial surface treatment and vertical test in collaboration with KEK ^B). Test result is reported in this paper.

1. はじめに

超伝導加速空洞にとって高い加速電界やQ値を得る ためには、空洞内面の表面処理のプロセスが重要であ る。これまで三菱重工メカトロシステムズ(株)は、多数の 超伝導加速空洞を製造してきたが[1]、表面処理はお客 様にて実施いただいていた。このプロセスを自社で実施 するため、我々は超伝導加速空洞の表面処理設備を導 入し、高エネルギー加速器研究機構殿(以降 KEK 殿) と共同で、設備の検証試験を実施した。本稿にて試験結 果を報告する。

2. 表面処理設備検証試験

2.1 試験概要

試験に用いる超伝導加速空洞は, KEK 殿から1 セル 楕円空洞, 共振周波数 1.3GHz を借用させていただい た。本空洞は, KEK 殿により表面処理(ただし化学研磨 ではなく電解研磨)が実施済で, 十分な性能が得られる ことが確認されている空洞である。この空洞に対して, 熱 処理, 化学研磨(BCP), 高圧水洗浄の順に処理を実施 し, クリーンルームにて最終組立をした後に, 縦測定によ り, 加速勾配および Q 値を評価する。

2.2 熱処理

1 セル楕円空洞に対して, 真空炉にて熱処理を施した。 真空炉の仕様を Table 1 に示す。試験条件は, 処理温 度 750℃, 処理時間 3 時間である。1 セル空洞はチタン 製の箱に収めた状態で真空炉に設置した(Table 2, Figure 1 参照)。

Table	1.	Outline	of	Vacuum	Furnace
raute	1.	Outime	UI.	vacuum	1 unnace

Dimension	φ 1300mm ×H3500mm
Temperature	Max 1200 °C
Vacuum level	1×10^{-4} Pa
Table 2: Tes	t Condition of Heat Treatment
Temperature	750°C
Time	3Hour
Surrounding	Cavity is set in Titanium box.

Figure 1: Heat treatment setup.

2.3 化学研磨(BCP)

熱処理後に, 化学研磨により空洞内面を 20μ m 研磨 した。試験条件を Table 3 に示す。空洞のビーム軸を鉛 直方向に向け, 配管をビームポートに接続し, CP 液を下 から上へ流した(Figure 2. Left 参照)。研磨終了後は, 空洞を純水で十分にすすぎ, 超音波洗浄を実施した(試 験条件は Table 4, 実施状況は Figure 2. right 参照)。

[#] Akihiro_miyamoto@mhims.co.jp

Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan August 8-10, 2016, Chiba, Japan

PASJ2016 MOP018

Table 3: Test Condition of Chemical Polishing

Acid	NO ₃ (69%):HF(47%):H ₃ PO ₄ (85%)
Flow rate	20L/min
Etching time	20min

Table 4: Test Condition of Ultrasonic Cleaning

Frequency	40kHz
Power	8000W
Water temperature	50°C
Cleaning medium	Pure water (Outside cavity) Pure water + detergent(Inside cavity)
Time	15min

Figure 2: (left) BCP setup (right) Ultrasonic cleaning setup.

2.4 高圧水洗浄(HPR)と最終組立

化学研磨が終了した空洞は、超純水の高圧水で洗浄 実施した。高圧水洗浄装置の仕様を Table 5 に、試験条 件を Table 6、実施状況を Figure 3(left)に示す。高圧水 洗浄後の空洞は、クラス 10 のクリーンルームに取り出さ れ(クリーンルーム仕様は Table 7 参照)、フランジとカプ ラを取り付け、真空排気、ベーキングを行った(実施状況 は Figure 3(right)参照)。

Table 5: Outline of High Pressure Rinsing Equipment

Specific resistance of Ultra-pure water	$> 18M \Omega \cdot cm$
Water pressure	Max. 10MPa
Water flow	Max. 10L/min
Movement	4 axes (Vertical movement of cavity, Cavity rotation around vertical axis, Rotation of cane, Horizontal movement of cane)

Fable 6:	Test	Condition	of HPR
----------	------	-----------	--------

Water pressure	6MPa
Water flow	6.4L/min

Figure 3: (left) HPR setup (right) Final assembly of the cavity.

Table 7: Specification of Clean Room

Cleanliness	Class10
Dimension	L7300mm×W4300×H2550mm
Туре	Horizontal coherent flow from side wall

2.5 縦測定

最終組立を完了した空洞は、KEK 殿にて縦測定試験 を実施し、加速勾配 Eacc=23MV/m、Q₀=1.0~2.0E+10 を得た。フィールドエミッションは見られなかったが、 23MV/m にてサーマルブレークダウン(クエンチ)し、プ ロセシングするも、それ以上の電界は得られなかった (Figure 4 参照)。

Figure 4: (left) V.T. setup (right) Q-E curve of the cavity that was made surface preparation.

縦測定後に空洞内面観察を行った結果,空洞内面に 多数の小さなくぼみが見られた(Figure 5)。化学研磨に よるものと考えられるが,詳細原因は調査中である。

PASJ2016 MOP018

After BCP Before BCP

Figure 5: (left) Inner surface of cavity after BCP, (right) Inner surface of cavity before BCP.

3. まとめ

三菱重工メカトロシステムズ(株)では,超伝導加速空 洞の表面処理設備を導入し,KEK 殿と共同で,設備の 検証試験を実施した。EP 処理した楕円空洞のような高 加速勾配は得られなかったが,表面処理後に,一定の 性能を得ることができ,特に加速勾配が高くない Low β 空洞等への設備導入の目途を得ることができた。今後も 設備の問題点を改善していく必要がある。

謝辞

超伝導加速空洞の表面処理設備を立ち上げることが できたのは、本分野の経験が豊富な KEK の加古永治 氏、梅森健成氏、許斐太郎氏等のご指導なしにはあり得 ませんでした。ここに感謝の意を表します。

参考文献

[1] T. Yanagisawa *et al.*, "Development for Mass production of Superconducting Cavity by MHI", in Proc. IPAC'15, Richmond, VA, USA, May 2015, paper WEPMA048, pp. 2876-2878.