SuperKEKB 入射器におけるミスアラインメント、ジッターによるエミッタン ス増大

EMITTANCE GROWTH BY MISALIGNMENTS AND JITTERS IN SUPERKEKB INJECTOR LINAC

清宮 裕史, 佐藤 政則, 諏訪田 剛, 肥後 寿泰, 榎本 嘉範, 宮原 房史, 古川 和郎 Y. Seimiya*, M. Satoh, T. Suwada, T. Higo, Y. Enomoto, F. Miyahara, K. Furukawa High Energy Accelerator Research Organization (KEK)

Abstract

In SuperKEKB injector linac, photocathode RF gun is used as electron source for low emittance high-charged beam. Main reason of the electron beam emittance blow-up is generally induced by wakefield in acceleration cavities. Offcenter charged beam in a acceleration cavity is affected by the wakefield depending on the offset size in the cavity and the beam emittance is increased. The emittance blow-up can be eliminated by appropriate steering magnet control so as to cancel the wake effect in the cavity. We perform particle tracking simulation with both misalignments (quadrupole magnet + acceleration cavity) and jitters (quadrupole and steering magnetic force + beam position). Emittance growth by the misalignments and the beam jitter is evaluated in this report.

1. 導入

SuperKEKB は素粒子物理実験のための電子陽電子 コライダーであり、デザインルミノシティは KEKB[1] の 40 倍である 8 × 10³⁵ cm⁻²/s である。高ルミノシ ティのため、入射器では高品質ビームが要求される。 SuperKEKB の Phase1 は 2016 年 2 月から 6 月まで行 われ、想定されていた様々な機器やソフトウェアの チェック、真空焼きが大きな問題なく進められ、無事 Phase1 を終えた。2017 年秋からの Phase2 では、最終 的に低エミッタンスビームが要求されているため、入 射器では Phase2 が終わるまでに低エミッタンスビー ムの輸送を確立する必要がある。

Fig. 1は SuperKEKB 入射器の概略図である。入射 器は、A, B, J-ARC, 1~5 のセクターから成る。規格化 エミッタンスとして、Linac エンドにて 20mm.mrad 以 下が要求されている。Linac には2種類の電子銃が存 在する。一つは、高電荷電子ビーム(10nC)を生成す る熱電子銃であり、主に陽電子を生成する目的で用 いられる。陽電子ビームは、セクター1でのタングス テンターゲットに 10nC の電子を衝突させることで生 成される。その後、陽電子は damping ring (DR) に輸 送され、エミッタンスが減衰される。DR は Phase2 か ら稼働予定である。最終的に、陽電子は 4GeV まで加 速され SuperKEKB の LER(Low Energy Ring) に入射さ れる。もう一つのカソードは、光カソードの RF 電子 銃であり、5nC の低エミッタンスビーム (20mm.mrad 以下)を SuperKEKB リングへ輸送する目的で用いら れれる。この低エミッタンスビームは 7GeV まで加速 され、SuperKEKBのHER(High Energy Ring) に入射さ れる。運転は 50Hz、96ns 間隔の 2 バンチで行われる。

HER に入射するための電子ビームには、陽電子の ための DR のような強力なエミッタンス減衰要素がな い。そのため、エミッタンスを保存するための研究が 進められてきた [2, 3, 4]。エミッタンス増大は主に加 速管内で生じる wake によって引き起こされる。ビー ムが加速管の軸から外れた場所を通過する場合、そ のオフセット量に依存した量だけバンチ先頭の電子 から生じた wake によって後続の電子が蹴られるため エミッタンスが悪化する。こうしたエミッタンス悪 化は、加速管の中心を通るような軌道をステアリン グで探し出すことである程度抑制することができる。 しかし、4極磁石や加速管のミスアラインメントだけ でなく、電磁石の磁場やビームのジッターによって もエミッタンスは増大する。我々は、現実的な4極磁 石や加速管のミスアラインメント、4極磁石、ステア リング磁石の磁場ジッター、ビーム位置ジッターに よるエミッタンス増大の評価を行った。

Figure 1: Schematic layout of the SuperKEKB injector linac.

2. シミュレーションの設定

SuperKEKB 入射器のセクター C からセクター5ま で、加速管内の縦と横の短距離 wake 場 [5] を考慮し たトラッキングシミュレーションを行った。短距離 の wake 場のみを扱うのは、入射器で運転されるバン チ間隔が 96ns かつ S-band 加速管のみで構成されてい ることから、それ以上の中距離、長距離の wake 場を 十分無視できるためである。このレポートでは、シ ミュレーションは Strategic Accelerator Design[6] で行 われた。低エミッタンスチューニングの手順は以下 のように行った。

^{*} seimiya@post.kek.jp

Parameter	Value	Unit
Initial emittance	10	mm.mrad
Initial charge	5	nC
Initial σ_z	3/2.35	mm
Initial δ	0.004	-
# of initial particles	40000	-
Distribution	Gauusian	-
S-band accelerator aperture	10	mm

Table 1: Basic Parameter Set, Aperture Values Indicate the Radius, δ is Relative Momentum Deviation

- 1. BPM の測定値が0となるようにステアリングを 用いて軌道補正
- C セクター始めの4つのステアリングを用いて 低エミッタンスとなるような値を探す(オフセッ トインジェクション)

入射器では、BPM のリファレンスポイントは Quad-BPM 法により4 極磁石の磁場中心で較正されている [7]。シミュレーションは BPM と最寄の 4 極磁石が同 じ量だけミスアラインメントしているとして行った。 現実的には BPM のリファレンスポイントと4 極磁石 の磁場中心は、およそ 50µm 程度のずれがあることが 3BPM で確かめられている [8,9]。後に図示するよう に軌道補正後の軌道はピークピークで ±2mm 程度で あるため、50µm という量が低エミッタンスチューニ ングへ及ぼす影響は十分小さい。 軌道補正は、全 BPM の測定値の二乗和が最小になるようにステアリング の磁場値をセットすることで行った。オフセットイ ンジェクションは低エミッタンスを実現できる手法 の一つである[10]。エミッタンス増大の主な原因の一 つは、加速管の中心からビームがオフセットするこ とでビームが wake 場によってオフセット量と進行方 向の位置に依存して蹴られるためである。そのため 一本の加速管のみを考えたとすると、オフセット量 を0にするか、加速管の入口と出口のオフセット量 が異符号になるようにステアリングを調整すれば良 いことがわかる。つまり、オフセットインジェクショ ンの目的は x, x', y, y' を 4 つのステアリングで変化さ せて wake によるエミッタンス増大を最小限に抑えら れる軌道を見つけることにある。シミュレーション では、5セクター最後でのエミッタンスを見つつ、最 小のエミッタンスとなるステアリング値を滑降シン プレックス法で求めた。ここで、同じ架台に乗ってい る加速管(4本)は同じミスアラインメントを仮定し た。また、ダブレット4極磁石についても同じミスア ラインメントを仮定した。ステアリングについては、 現実で設定可能なステアリングの最大磁場を超えな いように調整を行った。Table 1 は、このシミュレー ションにおける基本パラメータである。特に断らない 限り、シミュレーションにはこの値を使うこととし、 エミッタンスは入射器 END でのエミッタンスを表す こととする。

3. エミッタンス増大

目標とするエミッタンスは入射器 END で 20mm.mrad 以下である。エミッタンス補正は、 軌道補正とオフセットインジェクションによって行 われる。4極磁石と加速管のミスアラインメントは ガウス分布で与えており、3ヶ以下の値のみを採用し ている。本レポートでは、エミッタンスは RMS エ ミッタンスを用いており以下のように定義される。

$$\epsilon_x = \gamma \beta \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}.$$
 (1)

この式内においては、γ と β はそれぞれローレンツ因 子とローレンツ β を表す。

Fig. 2 は、RMS ミスアラインメントが 0.3mm のと きのシミュレーション結果の一例である。青と赤はそ れぞれ水平、垂直パラメータを表している。この図の 一番上から、それぞれエミッタンス、入射器 END ま での通過粒子数、軌道、 β 関数、ディスパージョン、 相対的運動量偏差、バンチ長、4 極磁石のミスアライ ンメント、加速管のミスアラインメント、ステアリン グ磁石の K 値を表している。セクター1の中心付近 からエミッタンスが増加しているが、これはその場 所に設置してあるシケインによってディスパージョ ンが生じたためと考えられる。

Figure 2: An example of beam parameters from sector $C{\sim}5$ with 0.3mm RMS misalignment of quadrupole magnets and acceleration cavities.

3.1 ミスアラインメント

RMS ミスアラインメントが 0.1mm, 0.2mm, 0.3mm であるとき、それぞれについて 60 種のミスアライン メントセットについてエミッタンス補正を行った。こ のとき、ジッターは無いとした。ジッターについて は次のサブセクションで扱う。Fig. 3 は水平エミッタ ンス vs. 垂直エミッタンスをプロットしたものであ り、左図が 1 バンチの電荷が Phase2 時の 2nC、右図 が Phase3 時の 5nC の場合である。2nC 時には 0.3mm のミスアラインメントでもエミッタンス増大はほと んど問題にならないが、5nC 時には大きく影響するこ とがわかる。5nC の際、RMS ミスアラインメントが 0.3mm の場合、エミッタンスが 20mm.mrad を超える

ものが存在する。一方、0.1,0.2mmの場合、エミッタン スが 20mm.mrad を超えるものは存在しない。そのた め、Phase3 では少なくとも 0.2mm 程度以下に RMS ミ スアラインメントを抑える必要があることがわかる。 (十分密にステアリングが配置されていればエミッタ ンス成長を抑えることは可能であるが、現実にはそ うなっていないためどうしてもエミッタンス成長が 生じてしまう。)

Figure 3: Emittance growth at the linac end for 60 random seed in each RMS misalignment in case of 2nC and 5nC.

Fig. 4 は、加速管もしくは 4 極磁石の RMS ミスア ラインメントを 0.1mm に固定した際、固定しない方 の値を 0.1, 0.2, 0.3mm と変化させた時のエミッタン スをプロットしたものである。どちらもエミッタン ス成長に寄与するが、4 極磁石のミスアラインメント によるエミッタンス成長の影響が大きい。これは、4 極磁石のミスアラインメントによって軌道が乱され、 より大きな軌道をもつビームが加速管を通過してし まうためと考えられる。つまり、加速管と4 極磁石の 軸が一致していないと、エミッタンス成長してしま うと考えられる。

Figure 4: Emittance growth at the linac end for 60 random seed in each RMS misalignment in case that quadrupole or accelerator cavity misalignment is fixed to 0.1mm. "MA" is MisAlignment.

3.2 ミスアラインメントとジッター

100種のジッター (ステアリング、4極磁石の磁場 ジッター or ビーム位置ジッター) について、前セク ションと同様に 60種のミスアラインメントにおける エミッタンス補正を行った。与えたジッターの大き さは以下である。

• K_Q 値ジッター / 最大 K_Q 値= 0.32% (peak-peak).

- K_{ST} 値ジッター/最大 K_{ST} 値=0.08% (peak-peak).
- ・ビーム位置ジッター=100μm (ガウス分布).

ただし、 K_Q と K_{ST} はそれぞれ 4 極磁石、ステアリング磁石の K 値を表す。

Fig. 5 は、ステアリングと4 極磁石の K 値のジッ ターが存在する場合のエミッタンスを示しており、黒 点は 100 種のジッターのエミッタンス平均値を表し たものである。赤ラインはさらに 60 種のミスアライ ンメントに対するエミッタンスの平均値をプロット したものである。黄点はジッターがない場合の 60 種 のミスアラインメントに対するエミッタンスの平均 値である。4 極磁石の磁場ジッターによる影響より も、ステアリングの磁場ジッターによる影響が大き く、ジッター量も 0.08%と小さいことから高精度なス テアリング電源が必要となる。RMS ミスアラインメ ントが 0.2mm の際でも、上記のジッターが存在する 場合 20mm.mrad 以下の達成が確実ではないことがわ かる。

Figure 5: Emittance growth averaged for 100 kinds of jitters (K value) about 60 misalignment.

Fig.6は、ビーム位置ジッターが存在する場合のエ ミッタンスを示しており、黒点、赤ライン、黄点は Fig. 5と同様である。図中の3つのヒストグラムは、そ れぞれの RMS ミスアラインメントにおける 60×100 種のエミッタンスをヒストグラム化したものである。 100種のジッターにおけるエミッタンス平均値を見る 限り、ビーム位置ジッターが 100µm 以下ならば RMS ミスアラインメントが 0.2mm でもおおよそ達成でき るように感じるが、ヒストグラムを見ると、ミスアラ インメントが 0.1mm でも分布の裾が 20mm.mrad を超 えていることがわかる。先ほどのステアリング、4極 磁石のジッターに関しても同様のことが言える。 本レ ポートでは議論しないが、どの程度ならば 20mm.mrad を超えても許容されるのか今後調査を行う必要があ る。また、ビームアングルジッターについて考慮して いないため、許容ビーム位置ジッター量はより制限 されると考えられる。これについても、今後調査予定 である。

Fig. 7 は、電荷ジッターが 2%存在する際のエミッ タンスを示したものであり、黒点、赤ライン、黄点 は Fig. 5 と同様である。赤ラインと黄点がほぼ同じで あることから、2%程度の電荷ジッターによるエミッ

Figure 6: Emittance growth averaged for 100 kinds of beam position jitters in each 60 kinds of misalignments.

タンスへの影響は無視できる程度の小さいことがわ かる。

Figure 7: Emittance growth averaged for 100 kinds of bunch charge jitter in each 60 kinds of misalignments.

3.3 測定されたミスアラインメント

入射器では、定期的に加速管を乗せる架台の位置 変化を Si フォトダイオード (PD) で測定している。最 近は要所要所に自動で架台の位置を測定する自動 PD も導入され、年月によって架台がどのように動いてい るか測定が行われている [11]。Fig. 8 の左端の図は、 PD から推定した加速管のミスアラインメントを表し ており、横軸はセクター C からセクター 5 までの距 離、縦軸がミスアラインメント量を表している。ここ では、例として 2015 年 4 月と 2016 年 1 月に行った 2 種を載せた。架台から見た加速管のミスアラインメ ントは、架台自体のミスアラインメント量より小さ いと考えられるため、架台から見た加速管の RMS ミ スアラインメントは 0.1mm と仮定しエミッタンス補 正を行った。つまり、加速管の RMS ミスアラインメ ントは以下のように記述できる。

$$\sigma_{total} = \sqrt{\sigma_{frame}^2 + \sigma_{ACC}^2},\tag{2}$$

ここで、 σ_{frame} は架台の RMS ミスアラインメント、 σ_{ACC} は架台から見た加速管の RMS ミスアラインメ

ントを表す。また、4 極磁石の RMS ミスアラインメ ントとして 0.2mm を仮定し、ジッターについては考 慮していない。左から 2~4 番目の図は、上記のミス アラインメントが存在する際の水平 vs. 垂直方向の エミッタンスを表しており、100種のミスアラインメ ント群についてプロットしたものである(黒点)。一 方、セクターをまたいだジョイント部付近の架台に おいて大きな位置変化が測定されており、どの程度 の変化が許容できるかを調査するためにジョイント 部付近の架台のミスアラインメントを2倍、4倍、8 倍にしてエミッタンス補正を行った。その結果が、そ れぞれ左から2番目、3番目、4番目の図の赤点に対 応している。デフォルト、2倍、4倍の結果は、およ そ 20mm.mrad 以下に収まっているが、8 倍の場合に は 20mm.mrad を超えるものがいくつも確認できる。 ジョイント部における加速管のミスアラインメント は、現状の4倍程度ならば許容できる可能性が高い ことがわかる。

Figure 8: Frame position data measured by Photo-Diode (left-most) and emittance at the linac end in case of default measured misalignment, 2 times misalignment at the sector joint, 4 times misalignment at the sector joint, and 8 times at the sector joint.

4. まとめ

4極磁石と加速管にミスアラインメントが存在する 場合、4極磁石とステアリング磁石の磁場ジッター、 ビーム位置ジッターが存在する場合の低エミッタン スチューニングシミュレーションを粒子トラッキン グシミュレーションで行った。その結果から、目標で あるエミッタンス 20mm.mrad 以下を達成するために は、少なくとも4 極磁石と加速管の RMS ミスアライ ンメントが 0.2mm 以下であること、4 極磁石と加速 管の中心軸が 0.2mm 以下で一致していること、ステ アリングの磁場ジッターが最大磁場に対して 0.3%以 下であること、ビーム位置ジッターが 100μm 以下で あることを満たす必要がある。本レポートのシミュ レーションにおいては、ビームアングルジッターを考 慮していないため、ビーム位置ジッターはさらに抑 える必要があると考えられる。現在の入射器におけ るビーム位置ジッターは 100~200 μ m であるため、 位置ジッター減の特定と抑制が必須であり、現在調 査が進められている。一方、電荷ジッターが 2%程度 存在してもエミッタンスへの影響は無視できるほど

小さいことがわかった。PD 測定も積極的に行われて おり、現実に即したシミュレーションが可能となり つつある。

謝辞

This work was partly supported by JSPS KAKENHI Grant Number 16K17545.

参考文献

- [1] KEKB Design Report, KEK Report 95-7.
- [2] L. Zang et al., Proc. of IPAC2011, San Sebastian, Spain (2011).
- [3] H. Sugimoto *et al.*, Proc. of IPAC2012, New Orleans Louisiana, USA (2012).
- [4] S. Kazama *et al.*, Proc. of IPAC2015, Richmond, VA, USA (2015).
- [5] K. Yokoya, "Short-Range Wake Formulas for Infinite Periodic Pill-Box", 1998.
- [6] Strategic Accelerator Design(SAD) home page; http://accphysics.kek.jp/SAD/
- [7] M. Masuzawa *et al.*, Proc. of EPAC2000, Austria Center Vienna.
- [8] T. Suwada *et al.*, Nuclear Instruments and Methods in Physics Research A 440, pp.307-319 (2000).
- [9] M. Satoh *et al.*, Particle Accelerator Society of Japan, WEPS097, 2012.
- [10] A.W Chao, B. Richter Meth. A 178, 1 (1980).
- [11] T. Suwada *et al.*, Particle Accelerator Society of Japan, TUP134, 2016.