PASJ2016 MOP077

cERL 周回部におけるバンチ長と放射スペクトルの測定 BUNCH LENGTH AND RADIATION SPECTRUM MEASUREMENT AT RETURN LOOP **OF CERL**

本田洋介 *^{A)}、島田美帆 ^{A)}、高井良太 ^{A)}、アリシェフアレクサンダー ^{A)}、ミハイルシェベレフ ^{A)}、加藤龍好 ^{A)} Yosuke Honda*A), Miho ShimadaA), Ryota TakaiA), Alexander AryshevA), Shevelev MikhailA), Ryukou KatoA)

^{A)}High Energy Accelerator Research Organization (KEK)

Abstract

One of the features of Energy Recovery Linac is the possibility to operate a short bunched beam in a high repetition rate. Using a coherent radiation from a short bunch, it can be a high power THz source. At cERL, we started commissioning of a bunch compression operation which controls the longitudinal dispersion of the arc section with an off-crest operation of the main accelerator. For a precise beam tuning of the bunch compression, a bunch length monitor is necessary. We have developed a spectrometer system based on an interferometer detecting a coherent transition radiation. We observed that the spectrum reached up to 1.4 THz, which corresponded to RMS bunch length of 150 fs.

はじめに 1.

ERL(エネルギー回収型線形加速器)は、線形加速器 の特長である低エミッタンスで短バンチのビームを、 エネルギー回収の原理で大平均電流で連続運転でき る加速器である。KEK では、将来の大型 ERL 加速器 のための試験加速器として cERL が建設され、現在コ ミッショニングが続けられている[1]。

cERL のバンチ圧縮モードの運転においては、入射 器で生成する数 ps のバンチ長のビームを、主加速器 のオフクレスト運転とアーク部の縦方向分散によっ て圧縮し、周回部の直線部において短バンチビーム を得る。RMS バンチ長~100 fs のビームが得られる と、THz 領域のコヒーレント放射が発生でき、大強度 テラヘルツ光源として利用できると期待されている。

cERL では、バンチ圧縮の詳細な調整を目的として、 2016年の運転から新たにアーク部の6極電磁石を追 加設置した。また、バンチ圧縮の調整の際に指標とす るモニタとして、周回部直線部においてコヒーレン ト遷移放射 (CTR) の測定を行う装置の開発を行って 来た [2]。

2016年2~3月の運転では、初めてバンチ圧縮運転 の試験を本格的に行い、ビーム調整の手順を確立し た[3]。CTR の自己相関干渉計によって放射のスペク トルを測定し、そこからバンチ長の評価を行った。ま た、バンチ圧縮モードでの CW 運転の実証試験も行 い、コヒーレントシンクロトロン放射 (CSR) の観測 を行った。

セットアップ 2.

2.1 加速器のレイアウト

Figure 1 に、cERL におけるバンチ圧縮運転試験の レイアウトを示す。バンチ圧縮運転時でも、入射器の 運転条件は通常運転と同じである。一方、主加速空洞 は通常運転から位相をシフトさせ、オフクレスト位 相で運転する。このとき、加速後のエネルギーを通常

運転時と合わせるために、加速空洞の振幅を上げて 運転する必要がある。

周回部は、2つのアーク部と直線部から構成される。 各アーク部は4つの45度偏向電磁石とその頂点を基 準に対称に設置された3連の4極電磁石からなり、ア クロマートでアイソクロナスな設計を基本としなが ら、縦方向分散(R₅₆)を正負に調整できるようになっ ている。また、各アークに2台ずつの6極電磁石が追 加され、高次の分散の補正を行う。バンチ圧縮運転時 の典型的なビームパラメータを Table 1 に示す。

Figure 1: Layout of cERL.

バンチ長の測定の目的で、直線部に CTR のモニタ を設置した。ビーム軸に対して 45 度に標的 (アルミ コートしたシリコン板)を挿入するものである。ビー ムの衝突によって CTR が 90 度方向に発生する。こ れを石英窓から真空チェンバの外に取り出して測定 する。CTR モニタはビームを破壊して測定するため、 CW 運転では使用出来ない。そのため、CTR を測定し てのビーム調整は、バーストモードと呼ぶ1μsの時 間幅のマクロパルス運転で行う。

アーク部の最終偏向電磁石には、25度の接線方向 に石英窓のポートが用意されている。偏向電磁石か らの CSR をここから取り出し、CW 運転時のモニタ として使用している。

2.2 CTR 干渉計モニタ

CTR モニタの構成を Fig. 2 に示す。標的から $1/\gamma$ の発散角で放射される CTR をまずパラボラミラーで 平行光線にして輸送する。装置は2つの部分から成っ

^{*} yosuke@post.kek.jp

Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan August 8-10, 2016, Chiba, Japan

PASJ2016 MOP077

Parameter	Value
Kinetic energy of the return loop	19.5 MeV
Kinetic energy of the injector	2.4 MeV
Acc. gradient of the main linac	2×8.5 MeV/cavity
Off-crest phase of the main linac	8 degree (typ.)
Bunch charge	0.23 pC/bunch
Macro-pulse width	1 μs
Micro-pulse repetition	162.5 MHz

 Table 1: Beam Parameter for Bunch Compression Operation

ており、途中の切り替えミラーで光路を切り替える ことができる。

切り替えミラーが挿入されると、CTR は狭帯域の ダイオード検出器に輸送される。検出器は2次元に 移動できるステージにマウントされており、複数の 検出器の切り替えや、マッピングによるプロファイ ル測定が出来る。検出器によって測定帯域を決め、相 対的な強度の変化をモニタするのに使用する。この 実験では、用意した狭帯域のダイオード検出器のう ち比較的高周波で有意な信号が観測しやすいもの(帯 域 140~220GHz, Virginia Diodes 社 WR5.1ZBD)を使用 した。

切り替えミラーを外すと、CTR はマイケルソン型 の干渉計に入力される。3.5 mm 厚の高抵抗シリコン 板のビームスプリッタを用いて2つの光路に分岐し、 ミラーで反射して重ね合わせ、パラボラミラーで集 光して検出する。検出器は、広帯域で平坦な特性のも のが望ましいので、He 冷却型のSi ボロメータを使用 した。干渉計の片方の光路のミラーは、ステージでス キャン出来るようになっており、自己相関の遅延をス キャンして干渉波形を測定することが出来る。また、 干渉計の各光路にはマイクロ波吸収体を挿入できる ようになっており、光路の強度バランスやベースラ インを確認できる工夫をしている。

Figure 3 にセットアップの写真を示す。最初に、検 出位置にはステージに乗せたダイオード型の検出器 を置き、これをスキャンして信号光の位置を確認、お よび2つの光路の重なりの確認を行った。そのうえで 検出器をボロメータに交換し、広帯域の測定が出来 るようにした。検出器の開口を大きくとると、光路の ミスアライメントによって干渉波形のビジビリティ が悪化するおそれがある。ボロメータの開口はアル ミ窓で直径 8mm に制限して使用している。ボロメー タの液体 He は約 20 時間しか保たないため、ビーム 調整の状況を見ながら検出器を冷却して準備し、運 転途中に一度入域して設置する、という手順で行っ ている。

3. バンチ圧縮のビーム調整

cERLの通常モードでは、主加速空洞はオンクレスト (最大加速位相)、アーク部はアイソクロナス (R₅₆ = 0) で運転する。この時、バンチ長はほぼ入射器のまま の 3 ps 程度で、エネルギー拡がりが小さく輸送しや

Figure 2: Setup of the CTR measurement.

Si Bolometer interferometer Figure 3: Picture of the setup.

すい条件である。一方、バンチ圧縮モードでは2台 の主加速空洞の位相を最大加速位相からシフトさせ る。そのままだとシフトした分だけエネルギーは下 がり、以降のビーム光学系が影響を受けてしまうの で、同時に振幅を上げ、ビームエネルギーが変化しな いようにする。これはアーク部のスクリーンモニタ でビーム位置を確認しながら微調整する。ここでは、 主加速空洞のオフクレストを+8度で調整した結果を 示す。限られた試験時間の測定例のうち、最もバンチ 長が短い結果が得られたと思われる例である。

アーク部の3連の4極電磁石を組み合わせて調整 することによって、アクロマートの条件を維持しなが ら*R*₅₆を連続的に変化させることができる。バンチが 短くなるとダイオード検出器で検出される CTR の強 度が増加するはずである。Fig. 4 に示すように、CTR の強度を測定しながら*R*₅₆ スキャンを行い、CTR 強 度が最大になる条件に設定した。さらに、高次の分

PASJ2016 MOP077

散補正を期待して6極電磁石をスキャンして同様の 測定も行った。しかし、これまでの試験では、6極電 磁石によって CTR がさらに強くなる条件は確認でき ず、6極電磁石は 0A で運転することとした。

4. バンチ長とスペクトルの解析

上述のようにバンチ圧縮を最適化した条件でマイ ケルソン干渉計をスキャンして得た、自己相関の干 渉波形を Fig. 5 に示す。干渉計のそれぞれの光路の強 度バランスも合わせて示した。ビジビリティが良く、 概ね対称な干渉波形が得られている事から、干渉計の アライメントは十分良く為されていると考えられる。

得られた干渉波形をフーリエ変換し、放射のスペ クトルに直したものを Fig. 6 に示す。理想的には、バ ンチ形状がガウス型で

$$\rho(t) \propto e^{-\frac{t^2}{2\sigma^2}} \tag{1}$$

とすると、そのフーリエ変換のガウス型のスペクトル、

$$\hat{f}(t) \propto e^{-(2\pi\nu)^2 \sigma^2} \tag{2}$$

が得られることになるが、現実的には、さらに輸送 系および検出器の周波数特性が掛かったものが測定 されることになる。400 GHz 以下の低周波数側は検出 器のカットオフのため測定されていないと考えられ る。また、1.2 THz および 1.5 THz 付近のディップは、 大気中の輸送における水蒸気の吸収の影響であろう。 1.4 THz 程度までの周波数成分が放射されていること が確認できることから、粗い評価で RMS バンチ長は 150 fs と見積もられた。正確なバンチ形状の評価には、 全帯域の測定が必要であるが、低周波数帯は外挿によ り評価している為、ここでのバンチ長の見積りはバ ンチ形状をガウス型と仮定の上での値と理解される。

5. CW 運転での CSR の測定

大強度テラヘルツ光源としての利用を目指すには、 CW-ERL 運転で THz 放射を発生する必要がある。こ のとき、THz 放射の発生は非破壊な過程でなければ ならず、偏向電磁石からの CSR を利用することが考 えられる。cERL では通常モードで約1mA の CW 運 転を実証しているが、バンチ圧縮モードでの CW 運

Figure 5: Interferogram of the Michelson interferometer.

Figure 6: Fourier spectrum obtained from the CTR interferogram.

転は、エネルギー拡がりの大きなビームの輸送や、短 バンチに起因する発熱など、新たな問題もあり得るの で、低電流から慎重に試験を開始したところである。

CSR ポートにおかれた焦電センサ (Gentec 社 THz-21-BNC) で測定された信号をビーム電流の関数 としてプロットしたものを Fig. 7 に示す。ビーム電流 に従って放射強度が増加する様子が測定されている。 バンチ圧縮ではまだ最大 50 µA までの試験に留まっ ているが、通常運転より速い立ち上がりを示してい ることが確認できた。

Figure 7: Beam current dependence of CSR intensity.

PASJ2016 MOP077

6. まとめ

cERLにおいてバンチ圧縮運転の試験を行った。バ ンチ圧縮のビーム調整は、直線部のCTRの強度を指 標にして行い、CTR干渉計によりスペクトルを測定 して、バンチ長を評価した。1.4 THz までの放射が確 認でき、RMS バンチ長は 150 fs と見積もられた。バ ンチ圧縮でのCW 運転の試験も開始し、CSRの測定 も行っている。

謝辞

本研究で使用したボロメータは大阪大学の木村真 一氏より借用しました。また、そのHe 冷却には、小 島裕二氏ほか cERL 冷凍機グループに協力して頂きま した。本研究の一部は、光・量子融合連携研究開発プ ログラムによるものである。

参考文献

- [1] S. Sakanaka *et al.*, "Operations with 1-mA beam current at the compact ERL", Proceedings of 13-th Particle Accelerator Society Meeting in Japan, Aug. 2016.
- [2] Y. Honda *et al.*, "Bunch Length Measurement at Return Loop of cERL", Proceedings of 12-th Particle Accelerator Society Meeting in Japan, Aug. 2015.
- [3] M. Shimada *et al.*, "Beam optics for bunch compression at the compact ERL", Proceedings of the 13th Particle Accelerator Society meeting in Japan, Aug. 2016.