PASJ2016 TUOL06

LHC 高輝度アップグレード用超伝導磁石の開発(4)

-2 m モデル磁石の冷却・励磁試験-

DEVELOPMENT OF SUPERCONDUCTING MAGNETS FOR LHC LUMINOSITY UPGRADE (4) -TEST RESULTS OF THE 2 M MODEL MAGNET-

榎本瞬^{#, A)}, 菅野未知央^{A)}, 中本建志^{A)}, 川又弘史^{A)}, 岡田尚起^{A)}, 岡田竜太郎^{A)}, 東憲男^{A)}, 荻津透^{A)}, 佐々木憲一^{A)}, 木村誠宏^{A)}, 田中賢一^{A)}, 大畠洋克^{A)}, 飯田真久^{A)}, 菅原繁勝^{A)}, 高橋直人^{A)}, Musso Andrea^{B)}, Todesco Ezio^{B)}

Shun Enomoto^{#, A)}, Michinaka Sugano^{A)}, Tatsushi Nakamoto^{A)}, Hiroshi Kawamata^{A)}, Naoki Okada^{A)}, Ryutaro Okada^{A)}, Norio Higashi^{A)}, Toru Ogitsu^{A)}, Ken-ichi Sasaki^{A)}, Nobuhiro Kimura^{A)}, Ken-ichi Tanaka^{A)}, Hirokatsu Ohhata^{A)},

Masahisa Iida ^{A)}, Shigekatsu Sugawara ^{A)}, Naoto Takahashi ^{A)}, Andrea Musso ^{B)}, Ezio Todesco ^{B)}

^{A)} High Energy Accelerator Research Organization (KEK)

^{B)} European Organization for Nuclear Research (CERN)

Abstract

The High Energy Accelerator Research Organization (KEK) has been developing the beam separation dipole magnet (D1) for the High Luminosity Large Hadron Collider (HL-LHC) upgrade. The magnet has a coil aperture of 150 mm using NbTi superconducting cable and dipole magnetic field of 5.6 T will be generated at 12 kA at 1.9 K to provide the field integral of 35 Tm. The excitation test at 1.9 K of the first 2-m-long model magnetic field measurement of the first 2-m-long model will be presented.

1. はじめに

欧州原子核研究機構(CERN)の LHC 加速器では磁 石への放射線によるダメージおよびルミノシティの増強 にともない 2024 年頃にビーム衝突点近傍の超伝導磁石 システムのアップグレードを計画している(高輝度アップ グレード:HL-LHC)。現行LHCでは積分ルミノシティ300 fb⁻¹(ピークルミノシティ1×10³⁴ cm⁻²sec⁻¹)に対して、HL-LHC では約 10 倍の増強(ピークルミノシティは5 倍)を 計画している。その中で高エネルギー加速器研究機構 (KEK)は CERN との国際協力の枠組みのもと、衝突点 近くのビーム分離用超伝導双極磁石(D1)の開発を担っ ている。

現状の LHC の D1 磁石では 6 台の常伝導磁石を用 いているが HL-LHC の D1 磁石は NbTi 超伝導磁石を 用いることで磁石長は 23 m から 7 m に短縮することがで き、新たなスペースに補正コイル、クラブ空洞の新たな設 置が行われる。D1 磁石の主なパラメーターを Table 1 に 示す。定格磁場は 5.57 T、積分磁場長は 35 T・mとなる。 技術的な課題としては、大口径化、放射線耐性、鉄の飽 和などが上げられ、これらについて[1-2]、および本学会 の講演[3]を参照されたい。

これまで KEK では、性能検証のため、実機 7 m に対 して直線部を短くした磁石機械長 2 m のモデル磁石 1 号 機の開発を行ってきた。2016 年 3 月に完成し、2016 年 4 月から 6 月にかけて冷却・励磁試験を実施した。

冷却・励磁試験は、主に以下の3つの試験項目に分 かれる。

Table 1: Design Parameters of D1 Magnet

General	7 m production	2 m model
Field integral	35 T•m	9.8 T∙m
Coil aperture	150 mm	
Nominal dipole field	5.57 T	
Coil peak field	6.44 T in the straight section	
	6.56 T at coil end	
Nominal current	12 kA	
Operation temperature	1.9 K	
Stored energy	340 kJ/m	
Field quality	< 10 ⁻⁴ with respect to nominal dipole field	

- トレーニングクエンチ試験: 4.2 K 及び 1.9 K において励磁試験を行う。定格電流 12 kA と受け入れ基準である 13 kA(定格に対して 108 %)を目安にトレーニングクエンチを実施する。
- ヒータークエンチ試験:実機磁石がクエンチにより 損傷することを防ぐため、超伝導コイルのクエンチ 伝搬速度などのパラメーターを実験的に求めて、ク エンチ保護用ヒーターを実際に動作させ、モデル 磁石が安全に保護されることを確認する。
- 磁場測定:磁石のボア中に常温クライオスタット チューブを挿入し、回転コイルにより磁場測定を行う。回転方向の磁場 B₀は次式で表される。

[#] enoshun@post.kek.jp

$$B_{\theta}(r,\theta) = B_{ref} \times 10^{-4} \sum_{n=1}^{\infty} \left(\frac{r}{R_{ref}}\right)^{n-1} \{b_n \cos \theta + a_n \sin \theta\}$$
(1)
参照磁場 B_{ref} は主双極磁場を示し、参照半径 R_{ref}

は 50 mm とする。また、係数 b_n , a_n はノーマルとス キューの 2n 極の多極成分を示し、単位は[unit]であ る。

2. 試験のセットアップ

2.1 冷却·励磁試験

冷却・励磁試験は KEK 超伝導低温工学センター第4 低温棟・縦型クライオスタットで行った。クライオスタットは 深さ9mあり、7m実機の試験にも用いられる予定であ る。Figure1に2m磁石のインストール写真を示す。冷却 運転のための液面計、温度計などが計装されている。磁 石には、クエンチ発生場所を特定するために電圧タップ、 冷却、励磁時の磁石構造体(カラー、ヨーク、シェ ル)の応力変化を測定するひずみゲージなどが取り 付けられていており、それらはトップフランジを介して測 定機器に接続される。また、電圧タップとは別に間接的 にクエンチ箇所を測定できるクエンチアンテナを磁石ボ アに挿入した常温クライオスタットに取り付けている。

Figure 1: Insertion of the 2 m model magnet to the 9 m-deep-vertical cryostat.

2.2 磁場測定方法

磁場測定用回転コイルは、常温クライオスタットに挿入 される。回転コイルは Figure 2 に示すように 3 つのラジア ルコイルから構成される。Coil-A はメインダイポールを測 定するために用いられ、Coil-A と Coil-B をバッキングコ イルとして用いて多極成分を測定する。通常の磁場測定 ではロングコイル(350 × 30 mm²)を用いるが、コイルエ ンドの詳細な分布を測定する場合は、同じ基盤上の ショートコイル(80 × 30 mm²)を用いる。得られた信号 はデジタルインテグレータ(PDI5025)でデータ集積を行 い、FFT(高速フーリエ変換)により多極成分をもとめる。

Figure 2: Rotating coils system and radial coils.

3. 試験結果

3.1 トレーニングクエンチ

トレーニングクエンチの結果を Figure 3 に示す。試験 の都合で、最初に4.45Kにおいてトレーニング試験を開 始した。4回目以降は 1.9 K に冷却して、トレーニングク エンチを継続したが、徐々にクエンチ電流が上昇してい る様子が分かる。途中、12回目と13回目の励磁の間に、 常温までのサーマルサイクル(昇温・再冷却)を行ったが、 クエンチ電流が大きく下がることなく、トレーニングメモ リーがよく残っていることを確認できた。結局トレーニング クエンチでは定格を超える12.6 kAまで到達することがで きたが、その後はクエンチ電流の上昇は留まり、受け入 れ基準である13 kA まで到達することができなかった。試 験の終盤には、むしろクエンチ電流が低下する傾向が 見られた。原因調査のため、一旦昇温して4.45Kでの試 験(28, 29 回目)を行ったが、4.45 K での臨界電流(11.5 kA)に対して90%以上通電できることを確認できた。この ことから、超伝導線材が損傷している可能性は低いと考 えられた。

PASJ2016 TUOL06

Figure 3: Training plot. SSL= Short sample limit.

次に、励磁時の超伝導コイルへの応力変化の測定結 果について示す。Figure 4 は超伝導コイルに接するカ ラー磁極部にかかる予備応力の変化量を示したもので ある。励磁していくと、コイルにはカラーから離れる方向 にローレンツ力がはたらく。そのためカラーに掛かる予備 圧縮応力は徐々に減少していき、最終的に 8.5 kA 以上 になると抜け切ってしまう(Δσが変化しなくなる)ことが分 かった。このことがトレーニング性能に影響を与えている

Figure 4: Stress variation at collar pole during excitation.

可能性が高いため、改善することを検討している。

3.2 ヒータークエンチ試験

ヒーター試験は連続して安定通電できる9.5kAまでで 実施した。スポットヒーター試験により低磁場と高磁場で クエンチ検出時間及びクエンチ伝搬速度を実験的に求 めることができた。また、クエンチ保護ヒーター試験では クエンチ誘発されるために最低限必要なエネルギーを評 価できた。モデル磁石2号機で組み込まれるクエンチ保 護ヒーターはこれらのデータをもとに設計改良を行う予 定である。

3.3 磁場測定

磁場測定では、磁石中心における最大 10 kA までの 電流依存性測定および z 方向分布の測定を行った。 Figure 5 にトランスファーファンクションの結果について 示す。6 kA 以上で鉄の飽和による影響が確認でき、磁 場計算結果は測定値を再現していることを確認できた。

また、多極成分(b₃, b₅)の電流依存性の測定結果を Figure 6 示す。コイル幾何学形状の影響が主に反映される 4 kA 以下の領域では、b₃のついての計算結果と約 4 unit の系統的な違いが観察された。これはコイル形状や 配置の約 50 μ m 程度の誤差により説明することができる。 6 kA 以上の領域では、鉄ヨーク飽和の影響が顕著となる

Figure 5: Transfer function measurement at coil center.

Figure 6: DC loop at coil canter. Comparison between measured and calculated b_3 and b_5 .

が、傾向は再現するものの計算との不一致が確認できた。

Z 方向の分布測定では Figure 7 に示すように b₃ など の 2 極磁石の allowed の Normal 多極成分については コイルエンドでの大きな磁場変化もよく再現しており、積 分磁場も計算結果をよく再現している。一方 Un-allowed の多極成分では Figure 8 に示すようにコイルのリードエ ンド(LE)、リターンエンド(RE)で計算結果と大きな差異が 見られた。

Figure 7: Allowed multipole b_3 of z-scan measurement at 7 kA. Magnet center is 0 mm.

Figure 8: Un-allowed multipole a_1 of z-scan measurement at 7 kA.

4. まとめ

LHC 加速器高輝度アップグレード用 D1 磁石の 2 m モデル磁石 1 号機を試作し、冷却励磁試験を実施 した。クエンチ試験、ヒーター試験、磁場測定を行い、磁石の性能評価を行った。

この結果、特にクエンチ性能に課題が見つかった ため、冷却試験後に本磁石の改造を進めている。そ して、2016年末を目途に再度冷却・励磁試験を行う 予定である。

参考文献

- T. Nakamoto *et al.*, "Model magnet development of D1 beam separation dipole for the HL-LHC upgrade," IEEE Trans. Appl. Supercond., vol. 25, no. 3, 2015, Art. ID 4000505.
- [2] M. Sugano *et al.*, "Development status of 2 m model magnet of beam separation dipole for the HL-LHC upgrade," IEEE Trans. Appl. Supercond., vol. 26, no. 4, 2016, Art. ID 4002606.
- [3] M. Sugano, presented at the 13th Annual Meeting of Particle Accelerator Society of Japan, Chiba, Japan, 2016.