Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan August 8-10, 2016, Chiba, Japan

PASJ2016 TUP014

超伝導薄膜の特性測定

CHARACTERISTICS MEASUREMENTS ON SC THIN FOIL

岩下 芳久^{#, A)}, 頓宮 拓^{A)}, 不破 康裕^{A)}, 早野仁司^{B)}, 佐伯 学行^{B)}, 久保 毅幸^{B)} Y. Iwashita^{#, A)}, H. Tongu^{A)}, Y. Fuwa^{A)}, H. Hayano^{B)}, T. Saeki^{B)}, T. Kubo^{B)} ^{A)}京大 化研, ^{B)} KEK/SOKENDAI

Abstract

Characteristic measurement setup using third order harmonic detection method for superconducting thin foil is under preparation. A coil located on a superconducting sample generates magnetic field. The magnetic field more than the critical field Hc1 causes penetration of flux into the superconducting material. By detecting a third order harmonic voltage component in the electromotive force of the coil that is driven by AC power source, the Hc1 will be evaluated.

1. はじめに

直流では原理的に抵抗損失のない超伝導も交流では 無損失ではないが、常伝導のそれよりは圧倒的に低損 失であるため高電界を必要とする加速管に用いられ始 めている。一般に、高周波電界発生時にはそれに伴う磁 場が壁面に発生する。超伝導空洞の場合は、空洞壁面 を構成する超伝導素材の臨界磁場で発生電界強度が 制限される。常伝導では交流時に表皮効果があるが、同 様に超伝導ではマイスナー効果のため、電流や磁場は ごく表面にしか存在せず、典型的には数 nm 程度である。 ここで、表層をその程度の厚さの超伝導薄膜で覆えば、 空洞を構成する Nb 基層への空洞内高周波磁場の直接 暴露を避けることが出来、より高電界を達成できる可能 性がある[1]。現在は、加工性の点から純金属中最も転 移温度が高いニオブが空胴素材として使われているが、 被覆する超伝導薄膜には基層より臨界磁場の大きい素 材を使うと有利であり、候補として NbN、Nb3Sn などが考 えられている。また、基層の Nb との間に絶縁層を介して 被覆する方がより高電界が望めるという理論もあり、それ らの成膜技術が重要である。そこで試作後の超伝導薄 膜の特性測定を行うため測定装置を準備中である。

2. 測定手法

臨界磁場を超えると磁束が超伝導材に侵入する。比 較的低周波の交流磁場を小型コイルにより発生させ、超 伝導状態の面上に印加する場合、臨界磁場以下ならマ イスナー効果により磁束が侵入しない(Figure 1 参照)。 しかし臨界磁場を超えると磁束が侵入し、時間的に変化 する交流磁場の場合、磁場の値が Bc1を超えたところで 磁場分布が変わるため、応答が非線形となり、交流磁場 を発生させるコイルに生じる電圧に高調波が生じる。これ を測定することによりBc1を知ることが出来る[2,3]。コイル は直径 10 mm×高さ5 mm 程度を考えており、自由空 間では電流密度 15 A/mm²でコイル中心で 500 G 程度 発生できる。ニオブの場合、Bc1 は 0 K で 2 kG 程度であ るが、8 K 程度では 500 G になる(Figure 2 参照)。線径 0.2 mmの銅線を巻くことにすれば、電流値は 600 mA 流 す必要がある。銅の電導率 σ は線材にもよるが、10 K で は二桁程度は上がることを期待し、 $\sigma = 6 \times 10^9$ S/m と仮定すれば(Figure 3 参照)、コイルでの発熱 P[W]は約 16 mW と見積もられる。この交流電流は総発熱量を減らすため、測定時のみパルスで印加することを考えている。 銅の常温での表皮厚さは 1 kHz で 2 mm 程度であるが、先の仮定から、極低温では 0.2 mm 程度になり、ここでは線径をその程度に選んでいるので、測定周波数は数kHz を想定している。

Figure 1: Superconducting material does not allow for a magnetic flux to penetrate when the magnetic field B is less than the critical field Bc1.

Figure 2: Hcl of Nb as a function of temperature.

[#] iwashita@kyticr.kuicr.kyoto-u.ac.jp

Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan August 8-10, 2016, Chiba, Japan

PASJ2016 TUP014

TEMPERATURE, K

Figure 3: Electrical resistivity of Cu as a function of Temperature.

3. セットアップ

セットアップは Saclay のものを参考にした。Figure 4 に 低温ステージの概略図を示す。サンプル板を2枚の銅円 板で挟む構造になっており、上円板には四ヶ所にタブを 設けてクライオスタット内に溜めた液体 He に漬け、除熱、 冷却する(Figure 5 参照)。コイルはこの上円板の中央に 埋め込んであり、フラックスリターンのパスを確保するた めにスリットを設けてある。コイルでの発熱はこの銅板を 通じて放熱する。下円板にも冷却タブが付けてあるが、 上円板のそれよりも細くして熱伝導による除熱を制限し てあり、ヒーターを用いた温度制御を行う。超伝導サンプ ルは下円板に固定して温度を設定する。温度センサー は上円板1ヶ所、サンプル1ヶ所、下円板2ヶ所(内一つ は温度コントロール用)を取り付ける。

液体 He で冷却するために使うクライオスタットには内 径150mmのものを使う(Figure 6 参照)。Figure 7 に示す ように測定ステージは上部からガラスエポキシ樹脂棒に よってつり下げ、液体 He の液面の低下に応じてステー ジの高さを外から調整する。

4. おわりに

気化した He を He ガス回収系に戻すための熱交換器 の設置も完了し、クライオスタットの準備、段取りがほぼ 終了している。秋口ぐらいに冷却を開始し、測定を開始 する予定である。なお、本研究は JSPS 科研費 26600142 の助成を受けた。

参考文献

- T. Kubo *et al.*, Radio-frequency electromagnetic field and vortex penetration in multi-layered superconductors, Appl. Phys. Lett 104, 032603 (2014).
- [2] M. Aurino *et al.*, Discrete model analysis of the critical current-density measurements in superconducting thin films by a single-coil inductive method. Journal of Applied Physics, 2005. 98: p. 123901.
- [3] G. Lamura *et al.*, First critical field measurements by third harmonic analysis. Journal of Applied Physics, 2009. 106: p.053903.

Figure 4: Schematic drawing of the low temperature stage (Left). Close up view of the coil area (right).

Figure 5: Fabricated cryogenic stage. A sample is put between the two copper disk plates, the coil is embedded in the top disk.

Figure 6: The cryostat and a heat exchanger for He gas return pipe on the wall.

Figure 7: The measurement stage hung by the plastic rods.