Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan August 8-10, 2016, Chiba, Japan

PASJ2016 TUP018

20Kにおける Cバンド加速管の大電力試験

High-Power Test of C-band Accelerating Structure at 20 K

飯野晃弘^{#, A)},山口誠哉^{A, B)},新冨孝和^{B)},肥後壽泰^{A, B)},舟橋義聖^{B)},松本修二^{B)},道園真一郎^{A, B)}, 遠藤克己^{C)},上野健治^{D)}

Akihiro Iino #, A), Seiya Yamaguchi A, B), Takakazu Shintomi B), Toshiyasu Higo A, B), Yoshisato Funahashi B),

Shuji Matsumoto^{B)}, Shinichiro Michizono^{A, B)}, Joe Endo^{C)}, Kenji Ueno^{D)}

^{A)} The Graduate University for Advanced Studies, SOKENDAI

^{B)} High Energy Accelerator Research Organization, KEK

^{C)} Toyama Co., Ltd.

^{D)} Mitsubishi Corporation Technos Co., Ltd.

Abstract

A coherent parametric x-ray radiation (PXR) source based on a cryogenic electron linac has been developed by Toyama Co., Ltd, KEK and Nihon University. This accelerator requires a high Q factor to obtain high accelerating gradient. To obtain a high Q factor, accelerating and decelerating structures are operated around 20 K. The accelerating gradient was achieved up to 30.9 MV/m at 1.0 µs pulse width. Amount of the dark current was not observed, and the observed radiation dose was quite low compared with an accelerating structure operated at room temperature.

1. 序論

現在、クライオ電子リニアックを基盤とするコンパクト空 間干渉性 X 線(PXR)源の開発を高エネルギー加速器研 究機構(KEK)、株式会社トヤマ及び日本大学を中心と した産学官共同で行っている[1],[2]。本加速器の概要図 を図1に示す。本開発の大きな課題の1つに、PXR発 生源となる加速器サイズと装置を囲う遮蔽体の小型化が ある。そこで本加速器では、PXR 発生に使用された電子 ビームを、減速管で 5 MeV(加速管入射エネルギー)ま で低減させる。また減速管で使用された RF 電力を加速 管での電子ビーム加速に再利用するが、純度 6N8 であ る高純度銅 (6N8 銅)材の加減速管を 20 K の低温下で 運転すると加減速管の Q 値が常温下と比較して 5 倍程 度高くなり[3]、エネルギー利得が高くなると考えられる。 本加速管のパラメーターを表1に示す。本報告では、本 加速管を冷却するためのクライオスタットの冷却試験及 び、低温での低電力試験と大電力試験の試験結果につ いて報告する。

Figure 1: Schematic of the accelerator.

Table 1: Parameters of New Accelerating Structure

Structure length	1.3 m
Resonance frequency	5712 MHz
Working temperature	20 K
Shunt impedance	350 MΩ/m
Unloaded Q factor	53,000
Accelerating mode	Traveling wave
Phase advance per cell	2π/3

2. クライオスタットの冷却試験

加減速管を冷却するクライオスタット内の冷却試験を 行った。冷凍機には GM 冷凍機を用いた。試験内容は 冷却時のクライオスタット内の温度の測定及び、冷却に よる減速管の変位の測定を行った。今回の試験では、減 速管の受け板の両端に3 セル空洞を設置し、その端面 の変位をトランシットで測定した。クライオスタット内の構 造を図 2 に示す。加減速管の受け板は、銅製の板(150 cm×40 cm 程度)上に設置されるが、この板は緑色の 6 本の支柱に乗っている構造となっている。6本の支柱のう ち、図3に示す黄色枠以外の5箇所はクライオスタットの 底板とボルト締結されておらずフリー構造になっているた め、温度変化とともに熱収縮により加減速管は黄色枠の 支柱を基点として変位する構造となっている。冷却試験 の結果、加減速管の受け板は10K程度まで冷却された。 変位測定の結果について、水平方向の変位については 図4に、鉛直方向の変位については図5に示す。水平 方向については 2 サイクル測定した。 常温から 10 K へ の温度変化による3セル空洞の水平方向への変位量は

[#] aiino@post.kek.jp

PASJ2016 TUP018

1.0 mm と計算されるが、冷却過程における下流側の変 位量は計算値の7割程度であった。昇温過程では計算 通り変位していることから、冷却過程で変位する際、支柱 摺動部の問題が考えられる。

Figure 2: Layout for the inside of cryostat.

Figure 3: The top view of cryostat.

Figure 4: The displacement of horizontal direction for the cavity.

Figure 5: The displacement of vertical direction for the upstream cavity.

3. 低電力試験

拡散接合で接合した 6N8 銅材の加速管について、低 温下で低電力試験を行った。図 6 にクライオスタット内に 設置した加速管を示す。

加速管は、運転温度である 20 K まで到達せず 48.8 K までしか冷却出来なかった。大電力試験では、20 K まで

加速管を冷却させるために加速管と加速管受け板間に インジウムを十分に配置することや加速管への熱流入源 となるクライオスタット内の導波管にスーパーインシュ レータを追加することとした。また大電力試験では冷凍 機を増設する予定である。表 2 に常温と低温下における 5712 MHz での低電力試験結果を示す。この結果より、 低温下で 5712±1 MHz の大電力を加速管に投入できる ことを確認できた。

Figure 6: The accelerating structure in the cryostat for a low-power test of the accelerating structure at low temperature.

Table 2: Results of Low Power Tests for the Acceleratin	ıg
Structure at 5712 MHz (RT : room temperature)	

No	Sequence	Att.	VSWR	VSWR
		(dB)	Input	Output
1	Before bonding at RT	-7.72	1.07	1.16
2	After bonding at RT	-9.7	1.20	1.17
3	After RF tuning at RT	-9.75	1.23	1.33
4	After setting in cryostat at 288.5K	-9.88	1.33	1.33
5	After setting in cryostat at 48.8K	-8.40	1.41	1.39

4. 大電力試験

4.1 大電力試験の概要

本加速管の大電力試験は KEK 入射器のテストスタン ドで行った。本試験では、50 Hz 運転時の到達加速電界 強度、放電頻度、コンディショニングの所要時間、暗電 流量と放射線量の測定を行った。大電力試験構成を図 7 に示し、加速管周辺の配置を図 8 に示す。

Figure 7: Schematic of high-power test for the C-band Accelerating Structure at 20 K.

Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan August 8-10, 2016, Chiba, Japan

PASJ2016 TUP018

(1)

Figure 8: Layout of the high-power test component around the accelerating structure.

4.2 大電力運転履歴

本試験では、RF パルス幅 2 us、繰り返し 50 Hz におい て、到達加速電界強度 34.0 MV/m を目標とする。コン ディショニングは以下のように行った。RF パルス幅 2 µs、 繰り返し 50 Hz を終始一定の予定で開始したが、RF パ ルス幅 2 µs では RF 電力を効率的に投入できなかった ため、RF パルス幅を 0.25 µs に狭めた。その後コンディ ショニング進捗に応じてパルス幅を変更し最終的にパル ス幅 1.0 µs まで広げた(図 9)。コンディショニング時間は 合計で 585 時間程度であり、ショット数に換算すると約 105.5×10⁶であった。夜間は入力電力を低く設定し運転 していたが夜間運転時間を除くと、真空悪化及び放電に よるトリップ頻度は1時間当たり4~4.5回程度であった。 ショット数 95×10⁶ 付近で真空圧力の悪化によるトリップ 回数が急激に増加しているが、この原因は冷凍機故障 による加速管温度上昇が原因であると考えられる。また ショット数 105×106 付近での加速管中央部の温度につ いて、運転前は 20.5 K 程度であったが、トリップ後は 30 ~40 K 程度まで上昇していた。RF 出力の測定では、ク ライストロン出口に設けたベーテホール方向性結合器で 検波しケーブル損失などを考慮し換算した。RF パルス 幅 1.0 µs でのクライストロン出口での最大 RF 出力は 37.2 MW であり、加速管入口部の最大 RF 出力は 34.2 MW であった。クライストロン出口での RF 出力と導波管での 損失及び加速管のシャントインピーダンスと減衰定数を 用いて、加速管で生じた加速電界強度 Eacc を算出すると、 RF パルス幅 1.0 µs で到達した Eacc は 30.9 MV/m となっ た。式(1)により[4]、Eacc を RF パルス幅(tp)により規格化 した加速電界強度E*acc及び、真空圧力の悪化と放電 (VSWR)によるトリップ回数の履歴を図 10 に示す。

加速管の入口と出口での RF 電力を測定し、RF 電力 の透過率を測定した。計算値は 0.897 である。 RF パルス 幅1.0 µs での測定値は0.85 程度であったが、パワーメー ターから加速管までの導波管でのロス2.8%を考慮すると、 計算値と測定値の差は 2%程度と測定誤差範囲内で あった。

Figure 9: E_{acc} vs number of accumulated pulses for the accelerating structure.

Figure 10: E_{acc}^* and number of trip vs number of accumulated pulses for the accelerating structure. The rescaling has been done applying the definition in Eq. (1).

4.3 暗電流と放射線量

加速管から発生する暗電流及び、放射線量を測定した。 暗電流の測定では、図7及び図8に示すように加速管 の上流及び下流にファラデーカップ(FC)を設置し測定 した。 電流計には、 Keithley: Model 6517B Electrometer を用いた。最大電力投入まで暗電流は観測されなかっ た。放射線量については、エリアモニター(メーカー:日 立アロカメディカル株式会社、型式:MAR-783)を上流 側カプラー及び下流側カプラー付近に設置し、1 分間の 平均放射線量を測定した結果を図 11 に示す。測定した 放射線量は、常温で運転する加速管の場合と比較して 少なかった。またエリアモニターと同じ位置に光電子増

PASJ2016 TUP018

倍管 (PMT) にシンチレーターを取り付けたものを設置し て、放射線の波形とパルス幅 1.0 μ s の RF パルス波形と 比較した(図 12(a, b))。PMT の出力波形を見ると、加速 管の RF パルス幅 1.0 μ s 程度の範囲の全域にわたり放 射線が放出されていることが分かる(図 12(a))。

Figure 11: The average radiation dose vs E_{acc} .

Figure 12(a): PMT output waveform and RF pulse waveform in operation.

Figure 12(b): PMT output waveform and RF pulse waveform at the trip of VSWR.

5. まとめ

低温下で運転する 6N8 銅材の加速管の特性を確認 するために、クライオスタットの冷却試験及び、低電力試 験と大電力試験を低温下で行った。冷却試験の結果、 加速管受け板は 10 K まで冷却され、冷凍機からの伝熱 機構が十分であることを確認できた。冷却による減速管 の変位について 3 セル空洞を用いて試験した結果、冷 却過程において水平方向については計算では 1 mm 変 位すると見積もられたが、測定では 0.7 mm 程度しか変 位しなかった。昇温過程では計算通り変位していること から、冷却過程で変位する際、支柱摺動部に問題がある 事が考えられる。

低電力試験の結果、低温下で本加速管に運転周波 数である 5712 MHz の高周波を投入可能であることを確 認した。そして大電力試験の結果、RFパルス幅1.0 µsで は 34.2 MW の電力(*E*acc=30.9 MV/m)を加速管に投入 できた。RFパルス幅 1.0 µs 時に、トリップ後に加速管温 度は 10 から 20 K 程度上昇していたことから、運転条件 や冷凍機の設置台数を再検討する必要がある。暗電流 については、運転中は検出限界(100 fA)で計測されな かったが、運転中において暗電流に由来すると考えられ る放射線が計測されたことや、暗電流量は温度の2 乗に 比例することが報告されているため[5]、検出限界以下の 領域で暗電流が発生した可能性がある。また今後加速 管の空間的時間的な温度分布の計算を行う予定である。

謝辞

大電力試験のセットアップにあたり、三菱電機システム サービス株式会社の方々をはじめたくさんの KEK 入射 器スタッフの方にご協力頂きました。深く感謝いたします。

参考文献

- I. Sato et al., "Developments of Coherent X-ray source based in cryogenic electron Linac" Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan (2014).
- [2] A. Iino et al., Proc. of IPAC2016. (Busan, Korea, 2016), MOPMW010
- [3] A. lino et al., "PROPERTY TEST OF THE CRYOGENIC Q-FACTOR FOR HIGH PURITY COPPER", Proceedings of the 12th Annual Meeting of Particle Accelerator Society of Japan (2015), THP048
- [4] Alberto Degiovanni and Walter Wuensch, PHYSICAL REVIEW ACCELERATORS AND BEAMS 19, 032001 (2016)
- [5] Klein, Ralph, and Lewis B. Leder. "Temperature Dependence of Electron Emission in the Field Emission Region." Physical Review 124.4 (1961): 1046.