PASJ2016 WEOL05

良好な花崗岩盤中に建設される ILC 加速器トンネルおよび

衝突実験空洞の耐震性検討

STUDY ON THE EARTHQUAKE-RESISTANT PERFORMANCE OF ILC TUNNEL AND LARGE CAVERN INTO GOOD-QUALITY GRANITIC ROCK MASSES

白岩丈幸^{#, A)},大山寛夫^{B)},京谷孝史・佐貫智行・吉岡正和^{C)}, 武内邦文^{D)},名合牧人^{E)},福田和寛^{F)},山下了^{G)}

Takeyuki Shiraiwa #, A), Hiroo Ohyama^{B)}, Takashi Kyoya • Tomoyuki Sanuki • Masakazu Yoshioka^{C)},

Kunifumi Takeuchi^{D)}, Makito Nagou^{E)}, Kazuhiro Fukuda^{F)}, Satoru Yamashita^{G)}

^{A)} Iwate Prefecture, ^{B)} Kajima Corporation, ^{C)}Tohoku University,

^{D)}Obayashi Corporation, ^{E)}Taisei Corporation, ^{F)}Shimizu Corporation, ^{G)}The University of Tokyo

Abstract

This study aims to preliminarily evaluate the earthquake-resistant performance of ILC tunnel and large cavern excavated into good-quality granitic rock masses around the potential Kitakami site of ILC in Japan. Even though tunnels in good rock is not required to consider earthquake effects (JSCE standard), ILC underground facilities should roughly be checked quantitatively and 2D analyses with using SuperFLUSH (dynamic FEM) are performed in this paper. Also, the image of tunnel support damage level at earthquake for ILC is discussed here. As a result of numerical analyses, ILC tunnel support and large cavern shotcrete are evaluated to keep sound when they are hit by the Level 2 earthquake input wave, which is the strongest earthquake in history.

1. はじめに

人類の抱える根源的な謎である宇宙の創生と未来 を研究する目的で計画されている国際リニアコライ ダー(以下、ILC、International Linear Collider という) とは、線形加速器により高エネルギー状態で電子と 陽電子の衝突実験を行うものである。この計画につ いては、素粒子物理学および加速器科学分野の国際 コミュニティーによりグローバルな設計活動が進め られ、2013年に技術設計報告書[1](以下、TDR、 Technical Design Report という)が発表された。その 後、2013年8月にはわが国に立地する場合のサイト 候補地としては岩手県の良好な花崗岩体が分布する 北上山地が科学技術的には最適であると科学コミュ ニティーが推薦した[2]。

大規模地下施設である ILC の主な特徴は、Figure1 に示すように、全長約 31km (I 期計画) におよぶ

線形加速器等を収容する加速器トンネル、その中央 部分で粒子を衝突させ観測を行う大規模な衝突実験 空洞、約 3km 延長のダンピングリングトンネル、そ して、地上から地下へ繋がる約 10 本のアクセスト ンネル等からなる。

文科省が日本学術会議に依頼した審議の結果であ る平成 25 年 9 月の「国際リニアコライダー計画に 関する所見」では[4]、素粒子物理学としての学術的 意義は認められるが、その一方で、LHC[5]との関係 も含め、本計画に必要な巨額の投資に見合うより明 確で説得力のある説明がなされることが望まれると して、政府において 2~3 年かけて有識者および関 係政府機関を含めて集中的な調査・検討を進めるこ とと提言された。これを受けて、平成26年5月に 文科省内のタスクフォースのもとに ILC に関する有 識者会議を設置し、審議を継続してきた結果、平成 27 年 6 月に ILC に関する有識者会議-これまでの議 論のまとめ-[6]を中間的に公表した(以下、中間と りまとめという)。この中間とりまとめの中で、 TDR の検証に関して提言された1項目の中には以下 の記載がある。

「ILC 計画は建設・運転等が長期間にわたるもの であり、想定される地震の規模に応じた耐震設計お よびそれに応じたコスト検討等のリスクの検討、対 応策の検討を詳細に行うことが必要である。」

そこで、本稿では、ILC をわが国に立地する場合 の有望候補地である北上山地の良好な花崗岩体中に 設置される ILC 地下施設の加速器トンネルおよび衝 突実験空洞を対象として、その地震時の耐震性能に ついて概略的に検討した結果を報告する。

[#] t-shiraiwa@pref.iwate.jp

PASJ2016 WEOL05

2. ILC 地下施設の概要

ここでは ILC 地下施設の概要を TDR 以降の報告 も含めて説明する。Figure 2 は ILC 施設のうち地下 に設置される加速器トンネルのイメージ図であり、 Figure 3 は衝突実験空洞の概念図である。なお、衝 突実験空洞は TDR では斜坑アクセスのみであった が、最新の検討としては斜坑アクセスとともに空洞 天端部に内径約18mの立坑とユーティティー立坑が 計画されている。わが国に立地する案では、これら は基本的に良好な花崗岩中に設置され、土被り 100m 程度の長大トンネルと大規模空洞となるため、 その建設に際しては調査、設計、施工を綿密に進め ていくことが肝要である。わが国の計画は Figure 4 に示す縦断線形図のように、欧米の案と比較して山 岳地形案(Mountain Topography)と呼ばれており、し たがって、その地形上の制約から、アクセストンネ ルは基本として重機が通行可能な斜度の斜坑案と考 えられている。

Figure 2: Concept of ILC Acceleration Tunnel [3].

Figure 3: Concept of ILC Detector Hall Cavern [7].

Figure 4: Longitudinal Profile of Mountain Candidate Site [8].

3. ILC 地下施設の概略耐震性検討結果

3.1 岩盤内地下構造物の耐震性に係る既往の知見

岩盤内に建設されたトンネル等の地下構造物の耐 震性に関する既往の文献[9,3,10]を調査した結果、 ILC 施設に有用と考えられる知見を以下にまとめる。

- ① 良好な地山中のトンネルへの地震影響は、地表に対して地下地震動が半分以下である観測結果が多くあり、また、土木学会トンネル標準示方書[11]でも「良好な地山中に建設されるトンネルは原則として地震の影響を考慮する必要はない」とされている。ただし、地質不良部や断面急変部等に対する配慮は個別に必要になる場合もあり、野城らがまとめたトンネル構造物の典型的な地震被害の発生パターンを Figure 5 に示す。
- ②海溝型巨大地震であった 2011.3.11 の東北地方 太平洋沖地震の際には、北上地域でも大きな地 震動が発生したが、基本的にはトンネルの地震 被害は報告されていない。
- ③内陸近傍活断層による直下型地震であった兵庫 県南部地震や新潟県中越地震では、地表構造物 は最大震度7程度で大きな被害を受けたが、ト ンネルについては覆工の剥落等は生じたが大き な崩壊等は生じていない。

朝倉ら(2000)より

Figure 5: Typical Earthquake Damages in Tunnel [12].

3.2 ILC 地下施設の耐震性評価に関する考え方

既往の知見から、良好な地山中のトンネルは地震 影響を考慮する必要性は小さいと考えられるが、中 間とりまとめで指摘されていることや海外関係者か らは漠然とした懸念があることから、本稿では北上 候補地を対象とした概略的ながらも定量的な地震影 響を検討することとした。その際に考慮した地下構 造物の耐震性評価に関する考え方を以下にまとめる。 ①本稿での ILC 耐震性評価の目的は、概略的なが らも定量的解析評価を実施し、基本的な耐震性 に一定の見通しをつけることである。したがっ て、原子力分野における耐震設計のような詳細 なものではなく、また、入力地震動についても 明確な根拠をもって設定するものではない。

②検討対象は良好な花崗岩中に掘削する加速器トンネルと衝突実験空洞とする。なお、小土被りの坑口部、地質不良部・地質急変部、空洞との 連接部、立坑等については、地点が決定した後の設計で対応すべきと考える。 ③ILC 運用の観点からは、地震影響が全くないように設計するのは現実的でなく、現実には、トンネル覆工の一部にひび割れ等が入っても修繕しながら運転を継続すると思われる。そこで、今回の定量的解析評価のために ILC 施設での地震被害の許容状態を定義する必要がある。

3.3 入力地震動の設定

兵庫県南部地震の後に土木学会がまとめた耐震基 準に関する提言[13]では、供用期間中に1~2度発生 する確率を持つレベル1地震動と、発生確率は低い が直下型地震または海洋型巨大地震に起因する更に 高いレベル2地震動を設定し、構造物が保有すべき 耐震性能を検討することを要求している。そこで、 本稿では最大の地震波となるレベル2地震動を、以 下の3つの方法で設定してみた。

1) 高圧ガス設備等耐震設計指針[14]

高圧ガス設備等耐震設計指針によれば、地表面に おけるレベル2地震動は以下の式で算定される。

$$K_{H} = 0.150 \quad \mu_{k}\beta_{1}\beta_{2}\beta_{3} \qquad (1)$$

$$K_{V} = 0.075 \quad \mu_{V}\beta_{1}\beta_{2}\beta_{3} \qquad (2)$$
ここに、 K_{H} : 地表面における地震動の水平震度
 K_{V} : 地表面における地震動の鉛直震度
 μ_{k} : 地震動レベルに基づく係数(レベル 2
の場合、 $\mu_{k}=2.0, \quad \mu_{V}=1.0$)
 β_{1} : 重要度係数=1.0 (最大値)

 β_2 :地域係数=0.8(岩手県全域)

β₃:表層地盤増幅係数=1.4(第1種地盤) これらの条件を入力すれば、北上地域における地 表面のレベル 2 地震動としては以下の式のように水 平で約 340gal、鉛直で約 90gal 程度となる。

K_H	_	0.336	(3)
K_V	=	0.084	(4)

2) 北上地域における地震観測結果からの算定

防災科研の強震地震網(KiK-net)[15]によれば、 北上地域近傍では Figure 6 に示す東和と藤沢観測点 の地表と地下 100m に地震計が設置されており、 Figure 7 に示すように両地点とも Vp が 5.0km/s 程度 の良好な花崗岩である。

これらの東和、藤沢地点で観測されたここ約 20 年間の強震記録によれば、海溝型の巨大地震地震で ある 2011.3.11 の東北地方太平洋沖地震による藤沢 観測点の加速度が最大で、それらは以下の値である。

地表水平最大加速度 654.7gal

地下100m水平最大加速度 158.7gal

3) 近傍活構造に基づく設計地震動の算定

Figure 8 は北上地域周辺の活断層分布であり、その中で ILC 立地候補地点に最も近いのは北上低地西縁断層帯で、その長さは約 61.1km、最短距離は約 22km である。この場合のレベル 2 地震動の推定としては、M7.8 の地震が対象となり、その最大速度としては、司・翠川[17]によれば以下となる。

Figure 6: KiK-net Earthquake Monitoring Location at Kitakami [15].

Figure 7: Geological Map around Kitakami [16].

地表水平最大速度 35.9cm/s

そして、この地表最大速度から最大加速度を推定 するため、Figure 9 に示す防災科研の資料を適用す れば、レベル 2 の地表最大水平加速度は以下となる。

地表水平最大加速度 約 200~430gal

4) 入力地震動の設定シナリオ

北上地域における上記 3 種類の地表でのレベル 2 最大地震動の検討から、本稿での安全側の概略耐震 検討としての入力地震動を設定する考え方として、 これらの中から最大加速度となる 3.11 東北太平洋沖 地震の地震波を入力するのが妥当であると考えた。 なお、その地震動は地表で約 655gal であるが、地下 100m 地点での水平最大加速度は 158.7gal、上下最大 加速度は 76.7gal となる。

3.4 地震被害に関する許容状態の定義

本稿で採用する地震被害の許容状態は、土木学会の ILC ガイドライン[3]で示された Figure 10 の損傷 レベル3までがレベル2 地震動に対する許容状態と する。すなわち、レベル2 地震動を入力した耐震解 析を実施した結果として、コンクリートのひび割れ や圧ざ破壊が1ヶ所までは許容するが、崩落につな がる圧ざ破壊2ヶ所は許容しないものとする。

Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan August 8-10, 2016, Chiba, Japan

PASJ2016 WEOL05

Figure 8: Active Faults around Kitakami [18].

Figure 9: Relation between Maximum velocity and Acceleration [19].

Figure 10: Image of Tunnel Support Damage Level [3].

3.5 解析対象・モデル化・および解析条件

耐震解析評価の対象は、良好な花崗岩中に掘削された加速器トンネルと衝突実験空洞とし、有限要素法の2DモデルをFigure 11に示す。なお、加速器トンネルのモデルでは中央に設置された遮蔽壁の厚さが 3.5m を考慮した場合と、安全側を考慮して遮蔽

壁がない場合とした。また、加速器トンネルの吹付 コンクリートとロックボルトは考慮しないものとし、 覆エコンクリートは厚さ 30cm の梁要素としてモデ ル化、衝突実験空洞ではロックボルトとロックアン カーはモデル化しないが、吹付コンクリートと覆工 は梁要素でモデルした。解析コードは耐震解析で実 績の多い SuperFLUSH とし、その境界条件としては、 モデル底面は粘性境界、両側面はエネルギー伝達境 界、上面は地表と考えて自由とした。岩盤物性値を Table1 に、コンクリート物性値を Table 2 にまとめ て示す。

Figure 11: FEM Models of Tunnel and Large Cavern.

Table I	: Input F	ropertie	es of Roo	ck Mase	ses
自位休藉重量	V	V		C	h

単位体積重量	$V_{\rm p}$	$V_{\rm s}$		G	h
kN/m ³	km/sec	km/sec	Vd	MPa	%
25.99	5.2	3.0	0.247	23, 850	3.0

Table 2: Input Properties of Concrete

部位		γ	E	Va	Н		厚さ m	
		kN/m ³	MPa		%	アーチ/側壁	底版	
加速器トンネル	覆工	24	25,000	0.2	5.0^{*}	0.3	0.4	
海灾中险灾灾	覆工	24	25,000	0.2	5.0^{*}	1.0	1.0	
個失夫缺空心	吹付	24	29,800	0.2	5.0^{*}	0.24	-	

3.6 加速器トンネルの耐震性評価結果

加速器トンネルの耐震解析の結果として、Figure 12 および 13 は時系列を無視した部材の最大曲げ モーメントを軸力の分布であり、それぞれ左図は遮 蔽壁ありの場合と、右図はなしの場合である。これ らの結果からアーチ部厚 30cm、床板部 40cm の覆工 に生じる最大縁応力を算定した結果が Table 3 であ り、遮蔽壁あり・なしの場合とも最大応力が設計基 準強度の 1/15 程度のため、覆工は地震時に十分健全 であると評価される。

Figure 12: Maximum Moments (kNm/m, Left: with shielding wall, Right: no wall).

Figure 13: Maximum Axial Forces (kN/m, Left: with shielding wall, Right: no wall).

		遮蔽壁あり	遮蔽壁なし		
	覆工	床板	覆工	床板	
M (kNm/m)	10.59	14.56	10.55	14.87	
N (kN/m)	231.75	408.3	268.11	433.45	
σ (MPa)	1.48	1.57	1.60	1.64	
$f_{ m ck}/\sigma$	16.2	15.3	15.0	14.6	

Table 3: Maximum Stresses at Concrete Support

3.7 衝突実験空洞の耐震性評価結果

衝突実験空洞の耐震解析の結果として、Figure 14 は時系列を無視した吹付コンクリートの最大曲げ モーメントと軸力の分布であり、Figure 15 は覆工の 最大曲げモーメントと軸力の分布である。これらの 結果からアーチ部厚 24cm、覆工部 100cm の部材に 生じる最大縁応力を算定した結果が Table 4 であり、 吹付コンクリートの最大応力が設計基準強度の 1/10 程度、覆工の最大応力は 1/2~1/5 程度のため、吹付 および覆工は地震時に健全であると評価される。

Figure 14: Maximum Moments and Axial forces (Left: kNm/m, Right: kN/m).

Figure 15: Maximum Moments and Axial forces (Left: kNm/m, Right: kN/m).

4. まとめと今後の課題

本稿では、北上候補地の良好な花崗岩盤中に建設 される ILC の加速器トンネルと衝突実験空洞を対象 に、概略的であるが定量的に地震影響を評価するた めに、解析的検討評価を実施した。その結果、加速 器トンネルの覆エコンクリートおよび衝突実験空洞 のアーチ部吹付コンクリートおよび側壁覆エコンク リートに生じるレベル 2 地震動時の最大応力は、部 材の設計基準強度に対して十分に小さく、したがっ て、概略的評価ながらも、地震時にアーチ部の覆エ コンクリートまたは吹付コンクリートが崩落するよ うな事象が生じる可能性は小さいと評価された。 Table 4: Maximum Stresses at Shotcrete and Concrete Support

	D/17 /→	覆工		
	PK IV	側壁	底版	
M (kNm/m)	4.14	1173.60	308.15	
N (kN/m)	699.67	3288.5	3144.7	
σ (MPa)	3.35	10.33	4.99	
$f_{ m ck}/\sigma$	10.8	2.3	4.8	

ILC 地下構造物の耐震性評価に関する今後の課題 としては、基本的な地震時健全性確保の見通しは得 られたが、岩盤条件が良好でない場合、地下施設の 交差部、地質変化部等については未検討であり、今 後の設計等で確認すべきである。

参考文献

- [1] Editors T. Behnke *et al.*, The International Linear Collider Technical Design Report 2013, Volume 1 Executive Summary, ISBN 978-3-935702-74-4, 2013.
- [2] ILC 戦略会議,国際リニアコライダー国内候補地の立 地評価会議の結果について、2013; http://ilc-str.jp/topics/2013/08231145/
- [3] 土木学会岩盤力学委員会:ILCの土木工事に関するガ イドライン, 平成26年3月.
- [4] 日本学術会議:回答国際リニアコライダー計画 に関する所見,平成25年9月30日.
- [5] CERN HP; http://home.cern/topics/large-hadron-collider
- [6] 国際リニアゴライダー(ILC)に関する有識者会議,
- これまでの議論のまとめ、平成27年6月25日. [7] ILC PAC Meeting, LAL Orsay, 2015.9.28; https://ilc.kek.jp/LCoffice/OfficeAdmin/ADIJ/20150928/Mi yahara150928.pdf#search='ILC+PAC+Meeting+LAL+Orsa
- [8] 坂下他, ILC 建設地点としての北上サイトの物理探査 による岩盤特性,土木学会第43回岩盤力学に関する シンポジウム講演集,2015年1月.
- [9] AAA 大型プロジェクト部会:国際リニアコライダー プロジェクト・国内立地課題検討報告書, 2012 年.
- [10] 土木学会岩盤力学委員会:加速器建設の土木技術に 関する調査研究報告書,平成 20年3月.
- [11] 土木学会:トンネル標準示方書山岳工法・同解説.
- [12] 野城他:山岳トンネルの地震被害発生メカニズムと 耐震性能の評価,鉄道総研報告, Vol.23,No.12, Dec. 2009.
- [13] 土木学会:土木構造物の耐震基準等に関する提言 「第三次提言」解説, 平成 12 年 6 月.
 - [14] 高圧ガス保安協会:高圧ガス設備等耐震設計指針
 (2012)レベル2耐震性能評価解説編, 平成24年7月.
 - [15] 防災研 HP; http://www.kyoshin.bosai.go.jp/kyoshin/
 - [16] 産総研 電子地質図; https://gbank.gsj.jp/geonavi/
 - [17] 司・翠川:断層タイプ及び地盤条件を考慮した最大 加速度・最大速度の距離減衰式;
 http://www.midorikawa.enveng.titech.ac.jp/pdf/attenuation 1999.pdf
 - [18] 地震調査研究推進本部主要活断層の長期評価より.
 - [19] 防災研:青井真; http://www.kyoshin.bosai.go.jp/kyoshin/topics/chuetsuoki2 0070716/pgav5v20070716.html

謝辞:本稿は地盤工学会に設置された委員会にて検 討した成果をまとめたもので、関係者にはここに深 く謝意を申し上げます。