PASJ2016 WEOM15

コンパクト ERL におけるビーム電流約1mA の運転

OPERATIONS WITH 1-mA BEAM CURRENT AT THE COMPACT ERL

坂中章悟^{#, A)},芳賀開一^{A)},羽島良一^{B)},原田健太郎^{A)},本田洋介^{A)},河田洋^{A)},小林幸則^{A)},許斐太郎^{A)}, 松村宏^{A)},宮島司^{A)},中村典雄^{A)},西森信行^{C)},野上隆史^{A)},帯名崇^{A)},下ヶ橋秀典^{A)},阪井寛志^{A)},島田美帆^{A)}, 田中オリガ^{A)},高井良太^{A)},梅森健成^{A)},山本将博^{A)}

Shogo Sakanaka^{#, A)}, Kaiichi Haga^{A)}, Ryoichi Hajima^{B)}, Kentaro Harada^{A)}, Yosuke Honda^{A)}, Hiroshi Kawata^{A)},

Yukinori Kobayashi^{A)}, Taro Konomi^{A)}, Hiroshi Matsumura^{A)}, Tsukasa Miyajima^{A)}, Norio Nakamura^{A)},

Nobuyuki Nishimori^{C)}, Takashi Nogami^{A)}, Takashi Obina^{A)}, Hidenori Sagehashi^{A)}, Hiroshi Sakai^{A)}, Miho Shimada^{A)},

Olga Tanaka^{A)}, Ryota Takai^{A)}, Kensei Umemori^{A)}, Masahiro Yamamoto^{A)}

^{A)} High Energy Accelerator Research Organization (KEK), ^{B)} QST, ^{C)} Tohoku University

Abstract

The compact ERL (cERL) is a superconducting accelerator which is aimed at demonstrating technologies for the future ERL-based light source. Production and recirculation of low emittance (< 1 mm·mrad) and high-average-current (\geq 10 mA) beams are primarily important. In March of 2016, we successfully transported the beam having an average current of approximately 1 mA to the beam dump. Due to careful accelerator tuning and the use of beam collimators, the beam losses were reduced to very small fractions of less than 0.01%, except for the collimator locations.

1. はじめに

コンパクト ERL (cERL)は、ERL 放射光源に必要な 技術を実証するための超伝導加速器である[1]。cERL では、低エミッタンス(規格化エミッタンス 1 mm·mrad 以 下)かつ大電流(平均電流 10 mA 以上)のビームを生 成・加速・周回させた後、エネルギーを回収してダンプま で導くことが目標である。電子ビームは、バンチ繰り返し 周波数 1.3 GHz で連続的(CW)に出力される他、ビーム 調整用にバーストビームの出力も可能である。

cERL は地上に放射線遮蔽体(cERL 加速器室)を建 設し、その中に設置されている。大電流のビームを周回 させる際には、加速器室外での放射線量率を十分低く する必要があり、非常に低いビーム損失率が要求される。 周回部では、概ね 0.01%以下のビーム損失率が必要で ある。

大電流ビームの周回時に大きなビーム損失や加速器 機器の異常が検出された場合には、Machine Mode System (MMS) がフォトカソード電子銃へのレーザー光 を止め、ビームを高速に停止する。この為のロジックはこ れまでの運転経験をもとに改良が進められ、信頼性のあ るシステムが構築されている。

cERL では、2013 年の入射部コミッショニングも含めて 4 回の放射線変更申請を行い、ビーム電流を段階的に 増強してきた。2015 年秋には、最大ビーム電流を1 mA (最大運動エネルギー26 MeV)に変更するための申請 [2]を行った。並行して遮蔽を一部強化し、加速器の幾つ かの改良も行った。

2016 年 2 月から変更申請後の調整運転を開始し、3 月 8 日に施設検査を受けて合格した。その後、ビーム電流を最大の 1 mA まで上げる調整を進め、ビームコリメータを使用することで、十分低いビーム損失を実現することが出来た[3]。 典型的な運転条件を Table 1 に示す。 運

shogo.sakanaka@kek.jp

転モードとして、まずバンチ繰り返し周波数 1.3 GHz、バンチ当たりの電荷 0.7 pC の連続(CW)運転を確立した。 次に、バンチ繰り返し 162.5 MHz、バンチ電荷 5.5 pC で も良好な運転条件を確立した。

本稿では、cERL のビーム電流増強の準備、大電流 運転時のビーム調整方法、および大電流運転の経験に ついて報告する。またビーム電流 10 mA を実現する見 通しについても述べる。

Table 1: Typical Operational Parameters of cERL

Beam energy	19.9 MeV
Injection energy	2.9 MeV
Bunch repetition rate (usual)	1.3 GHz
(for laser-Compton scattering)	162.5 MHz
Maximum average beam current	1 mA

2. ビーム電流増強の準備

2.1 レーザー導入ミラーの交換とセラミックへの覆い

2015 年 6 月までの大電流運転(最大 80 µA)では、 ビーム位置が数十分~1時間の間にゆっくりと変動する 現象が観測された。また、大電流運転の後でビームプロ ファイルが非対称にゆがむ現象もあった。これらの原因と して、フォトカソード電子銃にレーザー光を導入するため の鏡(ガラス基材にアルミ蒸着を施したもの)が帯電し、 その電場による影響が考えられた。2015 年 9 月にレー ザー導入鏡を金属製に交換したところ、それ以降上記の 現象は見られなくなった。

入射器空洞を通常(3.2 MV/m)より高い加速勾配(7 MV/m)で運転中に、電子銃直後のファラデーカップを 使用すると、真空圧力のスパイク的な上昇が周期的に見 られた。その原因として、ファラデーカップの絶縁用セラ

Proceedings of the 13th Annual Meeting of Particle Accelerator Society of Japan August 8-10, 2016, Chiba, Japan

PASJ2016 WEOM15

ミックが入射器空洞からの暗電流電子に照射され、帯電 して放電する現象が疑われた。2015 年 9 月にセラミック を金属製のカバーで覆った後、この現象は見られなく なった。また 2014 年 6 月の CW 運転(ビーム電流 1~4 µA)では、ダンプラインでバースト的な圧力上昇が 2 回 発生した。ビームダンプを絶縁するためのセラミックダクト (内面に約 10 nm 厚の TiN を蒸着)の内面を上流から 見えないように銅製の筒で覆う改良を施した後は、同様 の現象はほぼ起きていない。これらの経験より、暗電流 や損失ビームが照射される可能性のある場所には、セラ ミックを剥き出して設置してはならない事が明確になった。

2.2 ラスタリングシステムの稼働

cERL のビームダンプは最大 40 kW までのビームパ ワーを受けられるが、その際にビームを直径 40 mm 程 度まで広げる必要がある。このため、ダンプラインにビー ム位置を交流で走査させるシステム[4]を稼働させた。

2.3 ビームロスモニターの増設

CsI シンチレータと光電子増倍管から成る高速ビーム ロスモニターを増設し、合計 27 台とした。これらにより、 CW ビームおよびバーストビームに対して、ビーム損失を 観測できる。高速ロスモニターのうち 16 台をインターロッ ク用に用い、約 10 µs 以下の時間遅れでビームを停止 する。アーク部にはファイバーロスモニターも併設した。 また、加速器室内に半導体式放射線モニター(日立アロ カメディカル MAR-782)を 12 台設置してあり、主に壁際 での放射線量率の測定に用い、うち 10 台をインターロッ ク(高速ロスモニターのバックアップ、応答時間約 1 秒) に用いている。

2.4 放射線の変更申請と追加遮蔽

以前の放射線申請の下で、最大電流 80 µA、バンチ 繰り返し 162.5 MHz、バンチ当たりの電荷 0.5 pC での運 転条件を確立し、ビーム損失の場所と損失量を放射線 測定により推定した[5]。これらを元に小規模な遮蔽強化 を行う設計で、電流増強後の線量率の事前評価を行い、 最大電流を1 mA に増強する変更申請を 2015 年秋に 行った。2016 年 1 月 19 日に申請が承認された。

変更申請書[2]に記載された主な追加遮蔽は、合流部 コリメータと北直線部コリメータの遮蔽強化、南直線部側 にある空調用貫通孔の側方遮蔽強化である。cERLの 運転再開前にこれらを設置し、最大出力制限値を変更 した。KEK 放射線取扱主任者の検査を受け合格後、 2016年2月15日からビーム運転を再開した。

3. 大電流運転時のビーム調整

3.1 バーストビームでの調整

大電流の CW 運転を行う前に、低電流のバースト(パルス列)ビームを用いて加速器の調整を行う。マクロパルスの幅と繰り返しは 0.5-1 µs、5 Hz とし、バンチの繰り返し周波数(1.3 GHz または 162.5 MHz)とバンチ当たりの電荷は目標の大電流運転時と同じとする。

バーストモードの運転では、まずスクリーンモニター、 ビーム位置モニター等を使用してビームの軌道およびオ プティックスの調整を行う。その後、ロスモニターを使用し て、周回部でのビーム損失が小さくなるようにコリメータ 等を調整する。十分低いビーム損失が達成された後、 CW 運転モードに切り替える。CW 運転時には、ビーム 強度をゼロから目標値まで徐々に上げる。この過程で、 ロスモニターと加速器室内放射線モニター(MAR-782) を用いてビーム損失が小さい事を確認する。一旦大電 流まで到達した後では、ビーム電流を瞬時に最大値まで 上げても問題が無かった。

3.2 ビーム光学系の調整[6]

電子銃から主空洞手前までの区間(ビームエネル ギー2.9 MeV)では、目標バンチ電荷に対する良いビー ム輸送条件を GPT コードによるシミュレーションで見つ けておき、その条件に近づけるように入射部の設定を調 整する。ビーム軌道は、ソレノイドやバンチャー空洞、入 射器空洞等の各機器の中心に通すことを原則とする。機 器の設置誤差があるため、エミッタンス保存上重要な機 器の中心に通すことを優先する。

2016年の運転では、入射部でビームの軸対称性が良くなるように入射部の調整を行った。2 台の補正電磁石 (ソレノイドの中に組み込み)の磁場が強いと磁場一様性 が悪いことがわかり、これらの磁場を弱めることでビーム の軸対称性が改善できた。そのため、ソレノイドの中心通 しには拘らないことにした。

3 台ある2 セル入射器空洞については、ビームを垂直 方向に少し角度をつけて入射すると、ビームハロー(また はテール)を削り易い事がわかった。現在ビームロスの主 原因となるのは、カソードの時間応答によりバンチの後 方に発生するテールだと推測しており[7]、上記の方法で は加速用高周波によりテールが横方向にキックされると 考えられる。現時点での大電流運転では、この角度を付 ける方法を用いているが、ビームの極低エミッタンスを得 るためには、ビームテールを電子銃自体で減らすことで、 この方法をやめるのが望ましい。

周回部では、ビーム光学関数を設計値に近づけるよう 調整した。その為の手法として、周回部に7箇所のマッ チング点(Qマグネット)を設定し、そのQマグネットとス クリーンモニターを用いた waist scan の応答を測定する。 応答を設計値に近づけるように、上流4台のQの強さを 調整した。特に、主空洞直前の点(MP2A)でマッチング を取ることにより、入射ビームと周回部とのマッチングが 改善された。これらにより周回部の輸送条件が改善され た。また主空洞の加速電圧を変えて分散関数を測定し、 補正した。直線部での分散をゼロに近づける補正は、 ビーム損失を減らすのに有効であった。

良い輸送条件を見つけた後の再現性も重要である。 cERL 電磁石の磁場は非常に弱く、残留磁場やヒステリシスの影響が大きい。そのため、調整前には電磁石の標準化(standardization)を行う事を徹底した。また良い輸送条件を見つけた後にも標準化を行い、輸送条件が再現できることを確認した。

ビーム軌道については、主要な Q マグネットの強さを 変調し、下流でのビーム位置変動を最小にする方法 (beam-based alignment)でビームを Q マグネットの中心 に通した。この方法で確立した軌道を基準軌道とし、通 常の運転ではビーム位置モニターで測定した軌道を基 準軌道に近づけるように補正する。

PASJ2016 WEOM15

3.3 ダンプラインにおけるビームのラスタリング

ラスタリングの振幅が大きいほどダンプラインでのビーム損失が上昇する傾向が観測された。現時点ではビームダンプの熱負荷(最大 2.4 kW)は設計値 40 kW に対して余裕があるため、ビーム損失との兼ね合いで、ダンプ直前での振幅を全幅約 10 mm(丸形)、周波数を 9.99 Hz とした。

3.4 ビームコリメータの調整

ビームハローを削るために5台のコリメータを設置している。コリメータでは、水冷した無酸素銅製のロッド(直径14 mm)を上下左右から挿入する(Figure 1 参照)。コリメータのダクトを厚さ20 mm の鉛ジャケットで覆い、その外側に場所に応じて鉛壁を立てて遮蔽した[2]。このように、局所遮蔽された場所でビームハローを落とすことにより、加速器室外での線量率を抑えることが出来る。

Figure 1: Control panel of beam collimator, COL2.

コリメータの設置場所を Table 2 と Figure 5 に示す。低 エネルギー部(2.9 MeV)に設置されたコリメータ(COL1, COL2)では放射線レベルをあまり上げないでハローを落 とすことができ、極めて有用である。それ以外のコリメータ は、COL1,2 でハローが十分落とせない場合に用いる。 大電流運転(最大 0.9 mA)では、バンチ繰り返し 1.3 GHz の場合には COL1,2 のみを使用し、バンチ繰り返 し 162.5 MHz の場合には COL4 も併用した。

Table 2: Beam Collimato

Name	Location Dispersion	
COL1	Exit of injector	0
COL2	Merger	0.23 m
COL3	North-straight section	0
COL4	First arc	-1.28 m
COL5	Second arc	-1.28 m

バーストモードでのコリメータ調整の例を Figure 2 に 示す。図の上段は合流部コリメータ(COL2)の各ロッドの 位置(ビームダクト中心からロッド先端までの距離)を、中 段は第1アーク部入口と中央でのロスモニターの信号(ロ グスケール)を、下段はダンプで測定したビームのピーク 電流を、それぞれ示す。この例では、ピーク電流約 300 µA、バンチ繰り返し 1.3 GHz のバーストビームをビーム ダンプまで輸送しながら、COL2 の各ロッドを挿入し、周 回部におけるビーム損失が最小になる位置を探した。た だし、コリメータを挿入し過ぎてビームコアを削る(ダンプ でのビーム電流が低下する)事は避けた。cERL では、 ビームのハローのみを削り、コアを削らないコリメータ位 置が見つけられた。調整後の COL2 の設定値を Figure 1 に示す。コリメータ COL1 についても同様の調整を 行った後、CW 運転に切り替え、平均ビーム電流 300 uA までの運転でビーム損失が低い事を確認した。

Figure 2: Typical process of collimator adjustment.

4. cERL 大電流運転

4.1 バンチ繰り返し162.5 MHz での大電流運転

平均電流約 0.9 mA の大電流運転の例を Figure 3 に 示す。この運転では、バンチ繰り返し 162.5 MHz の CW ビームを生成・加速・周回・減速してビームダンプまで輸 送した。バンチ当たりの電荷は 5.5 pC、周回部の全ビー ムエネルギーは 19.9 MeV、入射エネルギーは 2.9 MeV であった。3.4 で述べたのと同様にコリメータ COL1, COL2, COL4 を調整し、Table 3 に示す位置に設定した。 入射器空洞(2 セル空洞 3 台)の加速勾配は (3.18, 3.22, 2.89) MV/m、主加速空洞(9 セル空洞 2 台)の加 速電圧は (8.56, 8.56) MV であった。図でビーム周回中 にビーム電流を 2 回ゼロに下げているのは、室温変化の ため電子銃用レーザー共振器の微調機構をリセットした 事による。レーザー室の断熱を強化すれば改善できる。

Figure 3: Beam current during high-average-current operation of cERL. Bunch repetition rate: 162.5 MHz.

PASJ2016 WEOM15

Table 3:	Example	of Col	limator	Setting

Collimator	Positions of rods (top, bottom, left, right)
COL1	(3.87, 3.23, 6.54, 2.51) mm
COL2	(2.14, 0.26, 4.21, 4.59) mm
COL4	(11.04, 9.03) mm

Figure 4 に大電流運転中のビームダクト内圧力をビーム電流に対して示す。電子銃直下流の入射部ミラーチェンバーではエキストラクタゲージで、それ以外では CCG で測定した。ミラーチェンバーの圧力はビーム電流によらず約 2×10⁹ Paの極高真空に保たれ、フォトカソードの 長寿命に貢献している。第1アーク(などの周回部)の圧力もビーム電流によらずほぼ一定であった。ビームまた はビームハローが照射されるビームダンプとコリメータ近く(Merger)の圧力は、ビーム電流とともに上昇した。電子 衝撃によるガス放出のためと考えられる。大電流運転を継続すると、焼きだし効果が見られた。将来ビーム電流 を 10 mA まで増強する場合には、ガス放出点付近の排気系を強化するのが望ましい。

Figure 4: Vacuum pressure vs. beam current.

cERL 加速器室は天井の厚さ1 m、側壁の厚さ1.5 m の鉄筋コンクリート製である。天井の上で観測される放射 線量率は加速器室内のビームロス分布を反映し、その 値からビーム損失率が推定できる。Figure 3 に示した運 転中に加速器室の天井上で線量率を測定した結果を Figure 5 に示す。測定器は日立アロカメディカル TCS-171Bを用い、バックグラウンド差し引き後の値を示した。

Figure 5 に示した線量率は十分低く、放射線管理区 域として全く問題ない。最も線量率が高かった点は、 ビームハロー(19.9 MeV)を落としているコリメータ COL4 の真上で、線量率 3.8 µSv/h であった。将来電流増強す る場合には、コリメータ上部の遮蔽強化をする事で線量 率を下げられる。また、図中(a)で示した領域でも線量率 がやや高めであるが、線量率はビーム電流によらず、主 加速空洞からの暗電流の寄与である。その他の場所で は、0.05 µSv/h 以下という非常に低い線量率であった。 なおコリメータ COL1, 2 でもハローを削っているが、低エ ネルギーのため天井上の線量率へは殆ど寄与しない。

天井上で線量率が高めの場所について、ビーム損失 率を見積もった結果を Figure 6 に示す。損失率は、ビー ム損失点と推定される 1 点でビームの一部が損失したと 仮定し MARS15 コードを用いて計算した天井上での線 量率と、実測値を比較して推定した[5]。コリメータ COL4 と第 1 アーク出口(Q マグネット内を損失点と仮定)での 損失率はそれぞれ、0.009%、0.0001%と推定される。周 回部のそれ以外の場所では、エネルギー19.9 MeV の ビームの損失率は1 箇所当たり0.0002%以下であると推 定される。

加速器室内放射線モニターとビームロスモニターによ る測定では[3]、第2アークの後半部から出口までの区 間と、主空洞の出口からビームダンプまでの区間におい て、比較的ビーム損失が大きいことも判っている。これら の区間での損失はビームオプティクスの調整に敏感であ り、オプティクスマッチング等をさらに精密に行う事で改 善が期待できる。また、シミュレーションと実験との比較に より、ビーム損失のメカニズムの理解も進んでいる[7]。

Figure 6: Estimated beam-loss rate.

Figure 5: Measured radiation-dose rates (unit: μ Sv/h) on the top of the cERL accelerator room. Average beam current: approximately 0.9 mA, bunch repetition rate: 162.5 MHz.

4.2 主空洞におけるエネルギー回収

ビームは主加速空洞(主空洞)を 2 回通過する。ビー ムが1度目の通過で加速され、2度目で減速される事に より、加速に必要な電力が減速時に回収される。主空洞 でのエネルギー回収を示すデータを Figure 7 に示す。 図では、2 台の主空洞(ML1, ML2)について、空洞への 入力 RF 電力(P_{in})と反射電力(P_{ref})の差をビーム電流に 対して示した。バンチ繰り返しは 1.3 GHz、主空洞の加 速電圧は(8.56, 8.57) MV, on-crest 加速であった。電力 差(Pin-Pref)がビーム電流にほぼ依らない事から、ビーム 負荷電力が、エネルギー回収無しの場合(最大 8.6 kW) に比べて格段に小さい事がわかる。特に、2 台の空洞合 計(ML1+2)では、測定誤差約 0.03%の範囲内で電力が 100%回収されている。個々の空洞 ML1, ML2 について は、ビームが1度目と2度目に通過する際に速度が僅 かに異なる為、電力回収率が 100%から±0.35% ずれて いる。なお Figure 7 の縦軸のオフセットは、ビーム電流 がゼロの時の電力差をゼロと定義した。

Figure 7: Energy recovery in main-linac cavities.

4.3 フォトカソードの寿命

Figure 8: Change in the photocathode QE during a high-average-current operation of March 29, 2016.

cERL 電子銃では、NEA 表面 GaAs フォトカソードを 用いている。電子銃チェンバーの到達圧力は 1×10⁹ Pa であり、大電流運転時にカソードの寿命は十分長い。 Figure 8 に、ある 1 日の大電流運転におけるカソードの 量子効率(QE)を引き出し電荷に対して示した[8]。約 15 C の引き出し電荷に対しては、QE の低下は小さい事が わかる。QE は大電流運転開始直後に急速に下がるが、 その後は徐々に増加する傾向が見られた。この QE の振 る舞いは興味深いが、まだ理論的に説明出来ていない。 なお大電流運転時には、カソード寿命を延ばすため、主 にカソードの電場中心からずれた位置(例えば、水平・ 垂直方向ともに約 1.5 mm)からビームを引き出した。

5. まとめと今後の見通し

コンパクト ERL において、平均電流 0.9 mA (CW)の 電子ビームの生成・加速・周回・減速に成功した。加速 器の調整とビームコリメータの使用により、非常に低い ビーム損失が達成された。

実績のある運転条件(バンチ繰り返し 162.5 MHz, バンチ電荷 5.5 pC、平均電流 0.9 mA)から繰り返しを 1.3 GHz に上げる事でビーム電流を 8 倍にできる為、ビーム 電流を 10 mA に増強した場合でも放射線量率は許容 範囲内と予想される。このため、放射線変更申請を行え ば、ビーム電流を 10 mA に上げることが可能であると考 えられる。なお電流増強の前には、ビームダンプへの追 加遮蔽、ダンプラインでのビーム損失対策、コリメータ部 への追加遮蔽、ダンプおよびコリメータ部の真空排気系 強化など、比較的小規模な改造を施すことが望ましい。

謝辞

cERL の建設と運転を行った ERL チームのメンバー、 ならびに放射線安全に関する検討や測定をして頂いた 放射線科学センターの佐々木慎一(現在は共通基盤施 設長)、波戸芳仁、三浦太一、穂積憲一、豊田晃弘、大 山隆弘、長畔誠司の皆様に深く感謝致します。

参考文献

- T. Obina *et al.*, "Recent Developments and Operational Status of the Compact ERL at KEK", in Proceedings of IPAC'16, TUPOW036.
- [2] 松村宏 他, "ERL 開発棟におけるコンパクト ERL の出力 増強に伴う放射線安全対策", KEK Internal 2015-6, Feb. 2016; http://ccdb5fs.kek.jp/tiff/2015/1526/1526006.pdf
- [3] S. Sakanaka *et al.*, "Measurement and Control of Beam Losses under High-average-current Operation of the compact ERL", in Proceedings of IPAC'16, TUPOW038.
- [4] 原田健太郎 他, "cERL のラスタリングシステム", this conference, MOP079.
- [5] H. Matsumura *et al.*, "Beam Loss Estimation by Measurement of Secondarily Produced Photons under High Average-current Operations of Compact ERL in KEK", in Proceedings of IPAC'16, WEPOR020.
- [6] 宮島司 他, "cERL コミッショニング運転における軌道調整 とビーム光学関数調整", this conference, TUP064.
 [7] 田中オリガ 他, "コンパクト ERL におけるビームロス低減
- [7] 田中オリガ 他, "コンパクト ERL におけるビームロス低減 のためビームハロー観察および解析", this conference, MOOL03.
- [8] 西森信行 他, "コンパクト ERL 電子銃の高性能化", this conference, MOP048.