

2018.8.9

第15回加速器学会 高エネルギー加速器研究機構 (KEK) 飯田 直子

for SuperKEKB and LINAC Commissioning Group

ダンピング・リング (DR): SuperKEKB-LERに入射するためのe+ビームの エミッタンスを小さくする





#### 0. DR

#### 1. The DR Complex

- Positron <u>Damping Ring(DR)</u>
- <u>Linac To Ring(LTR)</u>: DRへの入射路
- <u>Ring To Linac(RTL)</u>: DRからの出射路
- 2. LTRのコミッショニング
- 3. RTLのコミッショニング
- 4. まとめ



SuperKEKB-LERから 入射ビームへの要求値

|                  |         | -        |  |
|------------------|---------|----------|--|
|                  | Phase 2 | Phase3 - |  |
|                  | 2018年   | 2019年~   |  |
| γεχ [μm]         | < 200   | < 100    |  |
| γε <b>γ</b> [μm] | < 40    | < 15     |  |
| σδ [%]           | 0.16    | 0.1      |  |
| 電荷量 [nC]         | 1.5     | 4.0      |  |

#### **FODO Cell with Negative Bend**

Radiation Damping Timeを短くするため、Negative Bendを採用した(M. Kikuchi)



2

## **DR** Parameters

0. DR

| Parameters                                                  | New Model              | Unit |
|-------------------------------------------------------------|------------------------|------|
| Energy                                                      | 1.1                    | GeV  |
| Circumference                                               | 135.498295             | m    |
| # of bunch                                                  | 2                      |      |
| # of bunch / train                                          | 2                      |      |
| Max. stored current                                         | 11                     | mA   |
| Energy loss per turn                                        | 0.0847                 | MV   |
| Damping time $(\tau_x / \tau_y / \tau_z)$                   | 11.5 / 11.7 / 5.8      | msec |
| Emittance $(\varepsilon_x / \varepsilon_y / \varepsilon_z)$ | 29.2 / 1.5 / 3630      | nm   |
| $arepsilon_y$ / $arepsilon_x$                               | 5                      | %    |
| $v_x / v_y / v_s$                                           | 8.830 / 6.280 / -0.018 |      |
| Energy spread                                               | 0.055                  | %    |
| Bunch length                                                | 6.6                    | mm   |
| Mom. Comp. factor                                           | 0.0100                 |      |
| # of cells                                                  | 32                     |      |
| Total RF voltage                                            | 1.0                    | MV   |
| <b>RF</b> frequency                                         | 509                    | MHz  |
| Bucket Height                                               | 1.5                    | %    |

γε<sub>x</sub>/γε<sub>x</sub>( μm)=64.3/3.2

|                       | DRへの<br>入射 | DR<br>設計値 |
|-----------------------|------------|-----------|
| γε <sub>x</sub> (μm)  | 2800       | 64.3      |
| γε <sub>γ</sub> (μm)  | 2600       | 3.2       |
| σ <sub>z</sub> (mm)   | ±30*       | 6.6       |
| $\sigma_{\delta}(\%)$ | ±1.5*      | 0.055     |

## 1. DR complex

- LTR: 入射路
  - フラックスコンセントレーター(FC)(MOP063, Y. Enomoto, 他)からの陽電子は進行方向に
    巨大な広がりがある。ロスに注意!
  - DRのエネルギーアクセプタンス1.5%以内に納めるため、LTRでは入射ビームのエネル ギー広がりを小さくしなければならない。→ Energy Compression System(ECS)
  - R56= 0.6 m, Vc=41 MV
- RTL: 出射路
  - DRで<u>小さくなったエミッタンスを増大させずに、下流まで輸送</u>する。
  - DRからのバンチ長は6.6mmと長いので、LINACのS-bandに乗せるために短くしなければ ならない。 → Bunch Compression System(BSC)
  - R56= 1.05 m, Vc=21.5 MV



## Site of the DR



DRはKEKの敷地境界に近い。

# 2. LTRのコミッショニング

#### •2018年1月23日

- LTRコミッショニング開始
- •1月24日には、LTR終端までビームが到達した。
- 当初はFCなしの0.75nC/bunchで運転
- ロスに注意! • DRはKEKの境界領域に近いため、ビームロスは 低く抑えなければならない。
- LTR調整
- ・LTR、RTLの電磁石はDRのエネルギーに合わせて ヤット

2. LTRのコミッショニング

# LTRレイアウトとOptics



7

#### 2.LTRコミッショニング



- 1. 吟醸(コア)ビームを作って調整
  - 吟醸ビームは、第一アーク内のコリメーターで、"磨く"。
  - ECS Offで、そのビームがビームパイプの真ん中を通るように調整。
  - 吟醸ビームでECSの位相調整をする(ゼロクロスを探す)
- 2. DR入射調整も、吟醸ビー↓を使って行う。
  - 飽くまで、進行方向位相空間中心で合わせる。
- 3. コリメーターを開ける
- 4. 最後に、運転ビームに戻す。
- 5. これ以降、運転ビームで上記の調整をしてはならない。





運転用ビーム





運転用ビームは、ビームパイプ中心の周りを回転しながら進む.







2.LTRのコミッショニング

吟醸ビームでECS調整

Y. Seimiya, N. Iida



通常の**ECS**だと、 真横になるが、、



#### (Simulation)

**S-band**のカーブがあるが、 ±**1.5%**以内に収めるため、 傾きをつけた



10

### LTRのワイヤースキャナー(WS)でエミッタンスを測定

4台1組(ABCD)のワイヤースキャナーをLTR直線部に設置、ビームサイズ測定に使用。



|                                        |                        | 0.75nC        | 1.5nC    |
|----------------------------------------|------------------------|---------------|----------|
| 測定値                                    | 測定                     | FC : Stand-by | FC : 5kV |
|                                        | γε <mark>χ [μm]</mark> | 2350          | 2760     |
|                                        | γεγ [μm]               | 2310          | 2450     |
|                                        | BMAGx                  | 1.58          | 1.53     |
|                                        | BMAGy                  | 1.00          | 1.01     |
| FCのOn/Offで、測定されたエミッタンスに<br>大きな違いはなかった。 |                        |               |          |

|     |                       | 4nC   |       |
|-----|-----------------------|-------|-------|
| 設計値 | DR 設計                 | 入射路   | 出射    |
|     | γε <sub>x</sub> (μm)  | 2800  | 89.3  |
|     | γε <sub>γ</sub> (μm)  | 2600  | 4.5   |
|     | σ <sub>z</sub> (mm)   | ±30*  | 6.6   |
|     | $\sigma_{\delta}(\%)$ | ±1.5* | 0.055 |

**DR**入射からLINAC終端まで

H. Sugimoto





各アーク部のDispersion補正

低エミッタンスの保持には、各アークでDispersionが閉じてないといけない。



3セクターのワイヤースキャナーで エミッタンスを測定

| 0.7 [nC]        | Sector 3     |              |              | DR(Optics Calculation)                         |
|-----------------|--------------|--------------|--------------|------------------------------------------------|
|                 | 補正前          | 第2アーク<br>補正後 | 第1アーク<br>補正後 |                                                |
| γεχ [μπ         | ] 293 ± 44.5 | 192±22.4     | 126±8.2      | > 64.3                                         |
| γε <b>γ</b> [μm | ] 1.84±0.163 | 2.01±0.363   | 1.5±0.1      | XY coupling at DR<br>=1.5/64.3<br><=2.3 ± 0.2% |

水平Dispersionは半分以下に。

DRのXY Couplingは2.3%以下と推定される。



## 5セクターのワイヤースキャナーで エミッタンスを測定



| 0.7 [nC]                | wsによる測定値      |             | SuperKI<br>からの | EKB-LER<br>要求値 |
|-------------------------|---------------|-------------|----------------|----------------|
|                         | Sector 3      | Sector 5    | Phase-2        | Phase-3        |
| γεχ (μm)                | $126 \pm 8.2$ | $189\pm64$  | < 200          | < 100          |
| γε <mark>γ (μ</mark> m) | $1.5\pm0.1$   | $1.9\pm0.3$ | < 40           | < 15           |

| DR 設計                 | 入射    | 出射    |
|-----------------------|-------|-------|
| γε <sub>x</sub> (μm)  | 2800  | 64.3  |
| γε <sub>y</sub> (μm)  | 2600  | 3.2   |
| σ <sub>z</sub> (mm)   | ±30*  | 6.6   |
| $\sigma_{\delta}(\%)$ | ±1.5* | 0.055 |

- 3~5セクターでエミッタンス増大が観測されている。
  - Transverse Wake Fieldの問題。
  - Offset 軌道によるWake FieldのCancelを行う予定。
- 水平エミッタンスについては、Phase-3以降のSuperKEKB-LERからの入射ビーム条件が満たされない。

## DR内のDispersion測定値からの寄与



|   | H[m]    | δ      | ∆ε[nm]  | Δγε[μm] | ε [μm]                            | Δε/ε   |
|---|---------|--------|---------|---------|-----------------------------------|--------|
| Х | 6.08e-5 | Г Го 4 | 1.84e-2 | 0.04    | 64.3 (from DR Optics calculation) | 6.2e-4 |
| Y | 4.49e-5 | 5.58-4 | 1.36e-2 | 0.03    | 1.9 (from WS measurement)         | 1.5e-2 |

DR出射点で測定された水平DispersionからRTLへのエミッタンスの寄与は、 RTLでのエミッタンスに対して無視できるほど小さい。





## 水平エミッタンスの電荷量依存測定

| 電荷量 (nC) | 加速電圧(MV) | γβε <sub>x</sub> (μm) | γβε <sub>γ</sub> (μm) |
|----------|----------|-----------------------|-----------------------|
| 0.7      | 0        | 88±7.6                | $1.4\pm0.4$           |
| 1.5      | 0        | $104\pm7.4$           | $3.7\pm0.5$           |



CSR

インスタビリティの概算

Handbook of Accelerator Physics and Engineering

$$\|(k) = \frac{1}{c} \int_0^\infty dz W_{\parallel}(z) e^{-ikz}$$
$$= \frac{Z_0}{2\pi} \frac{e^{I\pi/6}}{3^{1/3}} \Gamma\left(\frac{2}{3}\right) \frac{k^{1/3}}{R^{2/3}}$$

dE=Z(k)L\*I/E dεx=(ηx\*dE)<sup>2</sup>/ $\beta$ x  $\Delta\gamma$ εx=Sum $\sum$  dεx)i=0.81µm < 40µm Z0=377 R=3.35m sz=1~7mm L=0.7938m cc=1nC, E=1.1GeV I=cc/σz\*c 材質:SUS316L

#### **Resistive wall**

Z

$$\frac{Z_m^{\parallel}}{L} = \frac{\omega}{c} = \frac{Z_m^{\perp}}{L}$$
$$= \frac{Z_0 c / (\pi b^{2m})}{[1 + sgn(\omega)i](1 + \delta_{m0})bc\sqrt{\frac{\sigma_c Z_{0c}}{2|\omega|} - \frac{ib^2\omega}{m+1} + \frac{imc^2}{\omega}}}$$

Δγεx=Sum∑dɛx)i=0.0012μm << 40μm いずれも概算では影響は小さそうであるが、さらにCSRのTracking simulationを検討中 (D. Zhou and Y. Seimi⅔a)

## まとめ

- SuperKEKB-LER用陽電子入射ビームのエミッタ ンスを小さくするためのDRへの入出射コミッ ショニングを行った。
- 2018年2月、入射(LTR)、出射(RTL)共に順調に立ち上がり、7月までSuperKEKB-LERに入射した。
- 今後の課題
  - DRから出射路されたビームのエミッタンスは、 SuperKEKB-Phase2(2018年運転)の要求を満たしてい るが、今後SuperKEKBの性能向上につれて、対策が 必要である。
  - RTLエミッタンス増大の原因については検討中
  - DR内のエミッタンス(ビームサイズ)測定
  - 3 セクターでのバンチ長測定
  - (BT下流でのエミッタンス増大)