J-PARC MRの大強度運転へ向けた バンチトレインチューンシフトの研究

Bunch train tune shift study for higher beam power at J-PARC MR

共著者:

外山毅、五十嵐進、佐藤洋一、下川哲司、久保木浩巧

協力:

- チューンシフトに関する情報の提供と助言:
- 大見和史様、菖蒲田義博様
- RF電圧の操作:杉山泰之様
- 議論および実験の協力:佐藤健一郎様、MR関係者の皆様

研究助成: JSPS科研費JP16H06288

はじめに

大強度陽子加速器施設 Japan Proton Accelerator Research Complex (J-PARC)

現在のMain Ring(MR)の主なパラメーター			
	injection energy	3.0 GeV	
	extraction energy	30.0 GeV	
	circumference	1567.5 m	
		2.48 sec(FX)	
	cycle time	5.2 sec (SX)	
		500 kW(FX)	
	total intensity	50 kW (SX)	
	harmonic number	9	
	RF frequency	1.672 - 1.72 MHz	
	tune H / V	~ 21.35 / ~21.45 (FX)	
		22.333 /20.8 (SX)	

number of bunches

~ 8

S. Igarashi et al., proceedings of HB2018

ビームロス低減のため、マルチバンチ でチューンシフトを測定した (それまではシングルバンチのみ)

チューンの測定

MRに設置されているエキサイター(ストリップラインキッカー) - ビームを横方向に蹴り、信号を励起

ビーム信号をビーム位置モニターで測定

スペクトルアナライザーでFFT解析、コヒーレントチューンを検出

チューンシフト

チューンシフト V.S. バンチあたりの粒子数

バンチ数依存性のチューンシフト:バンチトレインチューンシフト

チューンシフト V.S.全粒子数

横軸を強度(ppp)に直したもの

同じ強度でもバンチ数が異なるとチューンが異なる

チューンシフト

空間電荷による効果

個々の粒子(witness particle)はダクトから鏡像電流と、 磁石から鏡像磁場の力を受ける

チューンに影響し、チューンシフトが起こる

 $\Delta \nu = \Delta \nu_{\text{space charge}} + \Delta \nu_{\text{resistive wall}} + \Delta \nu_{\text{others}}$

空間電荷効果によるチューンシフト

Resistive wallの寄与

非円形のダクトはquadrupolarウェイク場を引き起こし 特に長い距離のウェイク場に影響を及ぼす

ビームを構成する粒子の受ける力が、水平・垂直方向で異なる)バンチトレインチューンシフト

 $\Delta \nu = \Delta \nu_{\text{space charge}} + \Delta \nu_{\text{resistive wall}} + \Delta \nu_{\text{others}}$

ダクトの形状を円形+非円形と近似

2ページ前の絵

tune shift slope $(d\nu_{x,y}/dN_b[\times 10^{12}/M])$

Tune shift slope	Horizontal	Vertical
Non-circular	0.0000916958	-0.000206191
Circular	-0.000071106	-0.000071106

第15回加速器学会年会 WFOM01

この補正の適用+さらなる調整によりビーム強度490 kWへ

まとめと今後

- J-PARC MRで大強度(2.4×10¹⁴ ppp)、かつ最大の 8バンチでバンチトレインチューンシフトを測定した

 - 強度・バンチ数・バンチングファクター依存性
- チューンシフトの傾きの符号が水平・垂直で異なるため、 非円形断面のダクトの形状によって発生する quadrupolar wake fieldが影響を及ぼしている可能性が ある
- バンチ数依存性については理論式を拡張する必要の可能性 があると考える
- チューンシフトを補正することで非線形共鳴へのかかり方 が変わってビームロスが減り、ビーム調整の結果、強度を 上げることができた
- さらなる大強度化に向けてシミュレーション等により、
 チューンシフトの評価とインピーダンスの他への影響を調 査する