# DEVELOPMENTS AND TESTS OF THE LHC LOW-BETA INSERTION SUPERCONDUCTING QUADRUPOLE MAGNETS (MQXA)

Norihito Ohuchi<sup>1,A)</sup>, Yasuo Ajima<sup>A)</sup>, Masahisa Iida<sup>A)</sup>, Hirokatsu Ohhata<sup>A)</sup>, Toru Ogitsu<sup>A)</sup>, Nobuhiro Kimura<sup>A)</sup>, Katsusige Sugawara<sup>A)</sup>, Takakazu Shintomi<sup>A)</sup>, Kenichi Tanaka<sup>A)</sup>, Kiyosumi Tsuchiya<sup>A)</sup>, Akio Terashima<sup>A)</sup>, Tatsushi

Nakamoto<sup>A)</sup>, Norio Higashi<sup>A)</sup>, Akira Yamamoto<sup>A)</sup>, Kei Sugita<sup>B)</sup>, Tomofumi Origasa<sup>C)</sup>

<sup>A)</sup> KEK, High Energy Accelerator Research Organization

1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan

<sup>B)</sup> The Graduate University for Advanced Studies

Hayama, Miura, Kanagawa, 240-0193, Japan

<sup>C)</sup> Toshiba Corporation

Shinsugita, Isogo, Yokohama, Kanagawa, 235-8523, Japan

#### Abstract

Under the collaboration program between CERN and KEK, KEK developed the superconducting quadrupole magnet, MQXA, for the LHC interaction region. This magnet was designed to generate an operating field gradient of 215 T/m in the magnet bore of 70 mm and have an effective magnetic length of 6.37 m. For the four interaction regions of LHC, 16 MQXA magnets will be installed with 16 MQXB magnets, which will be supplied from FNAL. KEK and Toshiba constructed 20 MQXA magnets including 4 spare magnets. For all MQXA magnets, magnetic fields were measured at room temperature, and for the 19 magnets, the routine cold tests at 1.9 K were completed. In this paper, we report the test results and the magnet performances.

# CERN-LHC衝突点用超伝導4極電磁石(MQXA)の開発と試験

### 1. はじめに

高エネルギー加速器研究機構(KEK)では、CERN-LHCへの国際協力の一環として、陽子ビームの衝突 用として使用される超伝導4極電磁石 (MQXA)の開 発・製作を行ってきた<sup>[1,2,3]</sup>。MQXA超伝導4極電磁石 はLHCの4カ所の衝突点近傍に設置され、米国FNAL で開発された超伝導4極電磁石(MQXB)と組み合わ されて4極磁場のトリプレットを形成する。図1に これら4極電磁石の構成を示してある。加速器運転 時に要求される磁石としての性能は、磁場勾配 215T/m(磁石内最大磁場8.6T)、磁場長6.37mであ る。超伝導ケーブルの材質はNbTiであることから、 磁石は1.9Kの加圧超流動液体ヘリウムで冷却される <sup>[4]</sup>。LHCには16台のMQXAが設置されるが、2001年6 月に実機1号機が製作されて後、36ヶ月間で予備も 含めて20台の磁石が製作された。20台の磁石は全て 室温で磁場測定を行い磁石の健全性を確認し、その 内19台を低温(1.9K)で試験を行った。本報告会で は、これらの19台の磁石のクエンチ特性及び磁場性 能について報告する。

## 2. MQXA超伝導4極電磁石

MQXAの断面形状を図2に示されるように、磁石内 径は70 mmあり、超伝導磁石は4層のコイルで形成 されている。磁石外径は490mmで、磁石長は6660mm である。運転時の超伝導状態の安定性を高めること を目的として、超伝導ケーブルは第2層4ターン目 から厚みの異なるものが使用されている。これら磁 石のパラメータは表1と表2に纏められている。







<sup>&</sup>lt;sup>1</sup> E-mail: norihito.ohuchi@kek.jp

| 表1 MQXAパラメータ                     |       |
|----------------------------------|-------|
| Magnetic Physical Length, mm     | 6660  |
| Magnetic Length, mm              | 6370  |
| Coil Straight Section Length, mm | 5960  |
| Coil Inner Radius, mm            | 35.0  |
| Coil Outer Radius, mm            | 81.3  |
| Yoke Inner Radius, mm            | 92.0  |
| Yoke Outer Radius, mm            | 235.0 |
| Field Gradient, T/m              | 215   |
| Magnet Current, A                | 7149  |
| Peak Field on the Coil, T        | 8.63  |

| 表2 MQXA超伝導ケ            | ーブルパラメ | ータ    |
|------------------------|--------|-------|
|                        | Inner  | Outer |
| Strand (NbTi)          |        |       |
| Diameter, mm           | 0.815  | 0.735 |
| Cu/Sc Ratio            | 1.2    | 1.9   |
| Filament Diameter, µm  | <10    | <10   |
| Cable                  |        |       |
| Width, mm              | 11.0   | 11.0  |
| Middle Thickness, mm   | 1.470  | 1.337 |
| Keystone Angle, degree | 2.107  | 1.273 |
| Number of Strands      | 27     | 30    |
| Critical Current, A    |        |       |
| @1.9K, 9T              | >13250 | >9000 |
| @1.9K, 11T             | >6000  | >4000 |

## 3. 励磁(クエンチ)試験

#### 3.1 励磁試験

19台のMQXAは室温での磁場測定により磁場性能に に異常が無いことを確認した後、縦型のクライオス タットを用いて1.9Kまで冷却し、励磁試験を行なっ た<sup>[5]</sup>。試験項目としては、(1)加速器運転時の磁 場勾配は215T/mにマージンを含めた230T/m(励磁速 度10 A/s)までの励磁、(2)215T/mでの遮断試 験(全エネルギーは磁石部で熱に変換される)、

(3) 220T/m迄の再励磁(磁石が損傷を受けていないことの確認)、である。

### 3.2 試験結果

図3に、19台のMQXAのクエンチ特性が示されている。又、図4には常伝導転移が始まった場所の統計を示してある。MQXA-1~3号機に於いては、リード取り出し側(図中:Lead End)で多く常伝導転移し、10回程度のトレーニングクエンチで230T/mに到達している。MQXA-2と-3号機では、磁石を室温まで昇温し再冷却した場合の励磁特性への影響についても調べられた。結果として、再冷却後、運転磁場勾配である215T/mまでクエンチしないで励磁出来ることが確認された。MQXA-4~7号機では、5回以下のトレー

ニングクエンチで230T/mに到達しているが、それ以 後の磁石では直線部分で常伝導転移が発生しトレー ニングクエンチの回数も増加した。磁場測定の結果 から、磁石本体に問題があるのではなく、磁場測定 コイルをガイドする断熱2重配管(材質:SUS)が 非常に強い磁場勾配により偏心し室温部と1.9Kの磁 石ボアー部が接触したことが原因であることが判明 した。断熱2重配管改良後の試験では(MQXA-15~ 19)、トレーニングクエンチの回数も8回以下とな り励磁特性も改善した。



### 4. 磁場測定

#### 4.1 磁場測定

MQXAの磁場性能は、長さ600mm、コイル半径21mm のTangential型のハーモニックコイルを用いて測定し た<sup>[6,7]</sup>。又、磁石磁場の積分値を測定する為に、 300mmステップでコイルを移動し測定を行なった。 以後報告する多極成分の値は、式(1)で定義し、 参考半径( $R_{ref}$ )は17mmとしている。多極成分( $a_n$ 、  $b_n$ )は4極成分( $B_2$ )に対する割合を10000倍した値 (*units*)で示してある。

$$B_{y} + iB_{x} = 10^{-4} B_{2} \sum_{n=1}^{\infty} (b_{n} + ia_{n}) \left(\frac{x + iy}{R_{ref}}\right)^{n-1}$$
(1)

#### 4.2磁場勾配と磁場長

先ず、4極成分の磁石直線部分の磁場勾配と実効 磁場長の測定結果について報告する。各値は式 (2)、式(3)により測定値から計算した。又、 19台の平均値と標準偏差(1o)の値を表3に纏めて ある。磁場勾配の値は、電流値に依存するが、19台 の平均値として31.7~30.0T/m/kAの値となる。各磁 石間の差は小さく、標準偏差は平均値の0.03~ 0.05%となっている。この標準偏差をコイルの内半 径(35mm)の形状誤差に換算すると約18µmの誤差に 対応する。又、磁場長も電流依存性があり、電流の 増加により大きくなる。測定値6364mm~6368mmの長 さに対して、19台の磁石の標準偏差は1mm程度であ る。この標準偏差は磁場長の0.016%に相当する。

$$G = \frac{\int_{straight \_section} B_2 dz}{L_{straight \_section} \times R_{ref}}$$
(2)

$$L = \frac{\int_{whole \_magnet} B_2 dz}{G \ \times \ R_{ref}}$$
(3)

| 電流値   | 磁場勾配   | 標準偏差               | 磁場長    | 標準偏差           |
|-------|--------|--------------------|--------|----------------|
| kA    | T/m/kA | $1\sigma$ , T/m/kA | mm     | $1\sigma$ , mm |
| 0.392 | 31.721 | 0.016              | 6364.3 | 1.10           |
| 2.01  | 31.559 | 0.010              | 6364.2 | 0.97           |
| 3.21  | 31.488 | 0.011              | 6364.2 | 0.90           |
| 6.10  | 30.408 | 0.009              | 6367.0 | 0.94           |
| 6.68  | 30.211 | 0.009              | 6367.5 | 1.04           |
| 7.23  | 30.033 | 0.009              | 6367.9 | 1.15           |

#### 4.3 多極成分 (エラー成分)

MQXA 4 極電磁石には、多極成分に対してビーム光 学上の制約から、表4に示す許容値が決められてい る。エラー成分は、systematic errorとrandom errorに 分けて表示されている。図1に示す様に、 $a_3$ 、 $b_3$ 、  $a_4$ 、 $b_4$ 、 $b_6$ については補正コイルがトリプレットに 組み込まれており、これら補正コイルは表4に示す 許容値の3倍のエラー成分をキャンセルすることが できる。

図5と図6に、19台のMQXAの多極成分と許容値の 指標としてsystematic errorとrandom errorの和をエ ラーバーとして示している。殆どの多極成分がビー ム光学上要求される許容値と比べて十分小さい値で ある。 $b_4$ 成分は、ほぼ許容値に近い値となっている が、磁石間の差が小さく( $1\sigma = 0.108$  units)、補正 コイルで十分キャンセルすることが出来る。又、現 在迄の解析で $b_4$ 成分は、磁石製作時に発生する磁石 断面の楕円変形が原因の一つと考えられ、50µmの 変形で0.5 unitsの $b_4$ 成分が発生することが計算上求 められている。

表4 MQXAの許容多極成分(units)

| n  | $a_n$  | $a_n$      | $a_n$  | $b_n$  | $b_n$      | $b_n$  |
|----|--------|------------|--------|--------|------------|--------|
|    | design | systematic | random | design | systematic | random |
| 3  | 0.0    | 0.684      | 0.965  | 0.0    | 0.684      | 0.965  |
| 4  | 0.0    | 0.331      | 0.511  | -0.17  | 0.923      | 0.658  |
| 5  | 0.0    | 0.130      | 0.240  | 0.0    | 0.131      | 0.252  |
| 6  | 0.0    | 0.067      | 0.120  | 0.33   | 0.891      | 0.446  |
| 7  | 0.0    | 0.031      | 0.056  | 0.0    | 0.031      | 0.055  |
| 8  | 0.0    | 0.021      | 0.028  | 0.003  | 0.041      | 0.028  |
| 9  | 0.0    | 0.012      | 0.019  | 0.0    | 0.012      | 0.019  |
| 10 | 0.0    | 0.012      | 0.009  | -0.002 | 0.058      | 0.037  |



多極成分は $b_4$ 成分以外は十分許容値と比べて小さく、 又 $b_4$ 成分についても補正コイルでキャンセル出来る 値である。

## 参考文献

- R. Ostojic, "Superconducting magnets for LHC Insertions", *IEEE Trans. Appl. Supercond.*, vol. 14, No. 2, p.p. 181-186, 2004.
- [2] A. Yamamoto et al., "Design study of a superconducting insertion quadrupole magnet for the Large Hadron Collider", *IEEE Trans. Appl. Supercond.*, vol. 7, No. 2, p.p. 747-755, 1997.
- [3] K. Tsuchiya et al., "Magnetic design of a low-beta quadrupole magnet for the LHC interaction region", *IEEE Trans. Appl. Supercond.*, vol. 10, No. 1, p.p. 138-141, 2000.
- [4] N. Kimura et al., "A pressurized He II cryogenic system for the superconducting magnet test facility at KEK", Adv. Cryo. Eng., vol. 47-A, p.p. 123-130, 2002.
- [5] T. Nakamoto et al., "Production and performance of the LHC insertion region quadrupoles at KEK", *IEEE Trans. Appl. Supercond.*, vol. 13, No. 2, p.p. 1321-1324, 2003.
- [6] N. Ohuchi et al., "Magnetic field measurements of the prototype LHC-IR MQXA at 1.9 K", *IEEE Trans. Appl. Supercond.*, vol. 12, No. 1, p.p. 188-191, 2002.
- [7] N. Ohuchi et al., "Magnetic field characteristics of the low-beta quadrupole magnets, MQXA, for LHC", *IEEE Trans. Appl. Supercond.*, vol. 14, No. 2, p.p. 191-194, 2004.
- [8] A. Ajima et al., "The MQXA quadrupole for the LHC lowbeta insertions", to be published in Nuclear Instr. and Methods, 2005.