ANALYSIS OF THE INTENSITY FLUCTUATIONS OF SASE USING AN AUTOREGRESSIVE MODEL

Ryukou Kato^{1,A)}, Shigeru Kashiwagi^{A)}, Chikara Okamoto^{A)}, Shoji Suemine^{A)}, Goro Isoyama^{A)}, Hironao Sakaki^{B)}

^{A)} Institute of Scientific and Industrial Research, Osaka University

8-1 Mihogaoka, Ibaraki, Osaka, 567-0047

^{B)} Japan Atomic Energy Research Institute

2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1195

Abstract

We have, by the use of an autoregressive model, analyzed the intensity fluctuation of SASE produced with the highintensity single-bunch beam from the L-band linac and the wiggler for the FEL system at the Institute of Scientific and Industrial Research, Osaka University. The power spectrum of the SASE intensity shows a flat and constant structure over the whole frequency range up to 0.7 Hz, which indicates that the intensity fluctuation of SASE is random, as expected, while a contribution originating from the fluctuation of the electron beam intensity shows up in the frequency region below 0.1 Hz and reaches approximately 20 % of the total intensity in the frequency region lower than 0.01 Hz. The power spectrum of the electron beam intensity shows a peak correspondingly in the same frequency region below 0.1 Hz. Thus, a contribution of the intensity fluctuation of the electron beam to the total fluctuation of the SASE intensity is evaluated quantitatively.

自己回帰モデルを用いたSASEの変動解析

1.はじめに

我々は、遠赤外領域でSelf-Amplified Spontaneous Emission (SASE)の基礎研究を大阪大学産業科学研究 所(以下、阪大産研)のLバンドライナックを用い て行っている。SASEの光強度はノイズレベルから 指数関数的に増幅されるため、光パルス内のコヒー レントな領域の数(モード数)に応じた本質的な変 動を含んでいる。他方、SASEを発生する電子ビー ムも、電子銃でのカソード温度やカソード・アノー ド間の高電圧の変動、加速管内でのRF電場の強度 や位相の変動により、エネルギー、電荷量、バンチ 長などのパラメータがパルス毎に変動する。結果と して、実際に観測されるSASE光の強度変動には、 前述の2つの要素に起因する変動が含まれることに なる。一般的に言って、測定されたSASEの出力変 動における両者の寄与を区別することは極めて困難 である。

我々は、これまで線形加速器で加速される電子 ビームの安定化のために、加速管に供給されるRF の強度や位相、加速管や冷却水の温度、商用電源の 電圧等の電子ビームにとっての環境要素となるパラ メータの時間変動を、電子ビームの電流変動と同時 に測定し、自己回帰モデル(Autoregressive Model, AR Model)を用いて電子ビームの不安定要因を特 定する研究を行ってきた[1]。今回この手法をSASE-FELの出力変動解析に応用することで、SASEの出 力変動に対するビーム変動の寄与を定量的に評価す る試みを行ったのでこれを報告する。

2.Lバンドライナックと測定系

阪大産研のLバンドライナックは、108MHz 空洞2 台と216 MHz空洞1台から成る3段式のサブハーモ ニックバンチャーシステムにより、プリバンチャー、 バンチャー系に入射される前の電子ビームを時間幅 で10分の1に、ピーク電流で10倍に圧縮できる。こ れにより、SASE発生等で用いられる単バンチ・ モードでは、バンチ当たりの電荷量で91 nC、ピー

表1:電子ビームとウィグラーのパラメータ

Electron beam	
Accelerating frequency	1.3 GHz
Energy	12.8 MeV
Energy spread (FWHM)	1.97 %
Charge/bunch	10-20 nC
Bunch length	20-30 ps
Peak current	0.5 - 1.0 kA
Normalized emittance	150-200 π mm mrad
Repetition	60 Hz
Mode	Single-bunch
Wiggler	
Total length	1 92 m
Magnetic period	60 mm
Magnetic period	00 mm
No. of periods	32
Magnet gap	120-30 mm
Peak field	0.37 T
K-value	0.013-1.472

¹ E-mail: kato@sanken.osaka-u.ac.jp

ク電流で3 kA以上の高輝度電子ビームの発生が可能 となる。プリバンチャー、バンチャー、主加速管は 加速周波数1.3 GHzの進行波型で、最大パルス出力 30 MWのクライストロンシステムで発生したマイク 口波が分割供給され、これらによって加速される電 子ビームの最大エネルギーは40 MeVとなる。電子 ビームはビーム輸送路により、FELシステムのウィ グラーに導かれる。ウィグラーは周期長60 mm、周 期数32のHalbach型で、磁極材としてNd-Fe-Bを使用 している。ウィグラーのK値は磁極間隔を変えるこ とにより、0.01から1.47まで可変である。実験時の 電子ビームとウィグラーのパラメータを表1に示す。

電子ビームがウィグラーを通過するときに放射す る光は下流側に設置された金属ミラーで反射され、 約10 mの真空排気された光輸送路を通って測定室ま で導かれる。ビーム輸送路側の高真空と光輸送路側 の低真空は厚さ0.2 mm、直径20 mmの合成ダイアモ ンド窓で仕切られている。光輸送路の測定室側には 回折格子型分光器が設置され、この分光器により単 色化された光は単結晶水晶窓から大気中に取り出さ れる。この窓を出た光は液体へリウム冷却された Ge:Ga 光伝導検出器により検出される。

実際の測定ではSASE光の強度とウィグラー入口 での電子ビームの電流値を、測定周期0.73秒で約12 分間の測定した。

3. 自己回帰モデル

自己回帰モデルは時系列解析の手法の一つであり、 構成要素が相互に影響を与え合うような複雑な系の フィードバック構造の解析に用いられる[2]。例とし て2つのパラメータだけからなるフィードバック系 を考える。現在の値X(n)が、過去の値X(n-m)、Y(nm)と白色ノイズe_x(n)で記述できると仮定すると、

$$\begin{bmatrix} X(n) \\ Y(n) \end{bmatrix} = \sum_{m=1}^{M} \begin{bmatrix} a_{xx}(m) & a_{xy}(m) \\ a_{yx}(m) & a_{yy}(m) \end{bmatrix} \cdot \begin{bmatrix} X(n-m) \\ Y(n-m) \end{bmatrix} + \begin{bmatrix} e_x(n) \\ e_y(n) \end{bmatrix}, (1)$$

と書き表すことができる。ここでMは自己回帰モデ ルの次数である。最適な次数MはFPE(最終予測誤 差:Final prediction error)[3]、またはAIC(赤池情報 量基準:Akaike information criterion)[4]により求め ることができる。(1)式を実際に測定された時系列 データにフィッティングする事により、自己回帰係 数a_{ij}とe_x、e_yが得られる。これらの係数と白色ノイ ズが、計算機上にモデル化されたフィードバック系 を表現することになる。

モデル化された系において、白色ノイズをゼロと おくと、系は全体として発散するか収束するかであ る。白色ノイズをゼロとおいた定常状態にある系の あるパラメータに時刻ゼロにおいて任意の大きさの インパルスを与えると、この変動が他のパラメータ

にどのように伝わってゆくのか、系全体としてイン パルスによる変動が収束していく安定な系なのか、 発散していく不安定な系なのかを知ることができる。 このような手法は"インパルス応答解析"と呼ばれ、 系におけるフィードバック構造の時間領域での物理 的なイメージを与える。

他方、パワースペクトルは時系列データの自己共 分散のフーリエ変換で定義される。あるパラメータ のパワースペクトルには、すべてのパラメータ(自 分自身を含む)の白色ノイズパワーからの寄与が含 まれる。このパワースペクトルに寄与する個々のノ イズパワーの比率を、ノイズパワー寄与率と呼ぶ。 ノイズパワー寄与解析により、あるパラメータの変 動に対して、その系の中で何が最も影響を与える因 子と成っているのかを調べることができる。

4.自己回帰モデルによる解析

4.1 インパルス応答解析

図1に示した電子ビーム電流とSASEの光強度の時 系列データをインパルス応答解析した結果を、図2 に示す。今回のデータ解析では自己回帰モデルの次 数はAICを用いて4となった。図2(a)はビーム電流 に大きさ1のインパルスを与えた場合の系の応答を、 図2(b)はSASEの光強度に大きさ1のインパルスを与 えた場合の系の応答を示している。(a)ではビーム電 流が0から1に変動したとき、SASEの光強度も増 大し、ビーム電流が減少するにしたがって、光強度 も減少している。他方、(b)ではSASEの光強度に変 動を与えても、ビーム電流は変動せず、SASEの光 強度もすぐに0に落ちている。この解析結果は通常 の物理的な理解と矛盾せず、測定データに対して自 己回帰モデルが上手く適用されていることを示して いる。

4.2 パワースペクトルとノイズ寄与解析

図3に示すのはビーム電流とSASE光強度のパワー スペクトルである。図3(a)のビーム電流のパワース ペクトルでは、ビーム電流の変動で支配的なのは 0.1 Hz以下の周波数成分であり、(物理的には当然 であるが)SASEの光変動の影響は受けないという ことが示されている。他方、図3(b)のSASE光強度の パワースペクトルでは、SASE光強度は0.1 Hz以下の 周波数領域でわずかにピークを持っているが、その ピーク成分はSASE以外のパラメータの寄与、すな わちビーム電流変動の影響を受けており、0.01 Hz近 傍でその影響は約20%と見積もることができる。ま た、SASE自身の変動はほとんど周波数依存性を持 たない変動であることが示されている。

5.まとめ

SASEの光強度の変動に対するビーム電流変動の

図3: (a)電子ビーム電流値のパワースペクト ル。(b)SASEの光強度のパワースペクトル。

影響を評価するために、SASEの光強度とウィグ ラー入口でのビーム電流を同時に測定し、自己回帰 モデルによる解析を行った。その結果、SASEの光 強度のパワースペクトルは、SASE自身による周波 数依存性を持たない変動成分と0.1 Hz以下の周波数 領域でのビーム電流変動からの寄与成分により構成 されることが分かった。SASEの光強度変動に含ま れるビーム電流の影響は100秒以上の長周期では約 20%になることが示された。

参考文献

- [1] R. Kato, et al., Nucl. Instr. and Meth. in Phys. Res. A 528 (2004) 244.
- [2] H. Akaike, Ann. Inst. Statist. Math., Vol. 20 (1968) 425-439.
- [3] H. Akaike, Ann. Inst. Statist. Math., Vol. 23 (1971) 163-180.
- [4] H. Akaike, IEEE Trans. Vol. AC-19 (1974) 716-723.