THE OPERATION OF THE RIKEN RIBF RING CYCLOTRNS

Hiroshi Imao ^{#,A)}, Eiji Ikezawa^{A)}, Shigeru Ishikawa^{B)}, Yukimitsu Ohshiro ^{C)}, Jun-ichi Ohnishi^{A)}, Hiroki Okuno ^{A)}, Tadashi Kageyama ^{A)}, Masayuki Kase ^{A)}, Osamu Kamigaito ^{A)}, Masanorii Kidera ^{A)}, Hironori Kuboki ^{A)}, Keiko Kumagai ^{A)}, Yasuteru Kotaka^{B)}, Akira Goto^{A)}, Kiyoshi Kobayashi^{B)}, Misaki Komiyama^{A)}, Ryo Koyama^{B)}, Naruhiko Sakamoto^{A)}, Junsho Shibata^{B)}, Kenji Suda^{A)}, Noritoshi Tsukiori^{B)}, Takahide Nakagawa^{A)}, Makoto Nagase^{A)}, Takeshi Nakamura^{B)}, Minoru Nishida^{B)}, Makoto Nishimura^{B)}, Hiroo Hasebe^{A)}, Makoto Hamanaka^{B)}, Yoshihide Higurashi^{A)}, Seiji Fukuzawa^{B)}, Nobuhisa Fukunishi^{A)}, Masaki Fujimaki^{A)}, Takeshi Maie^{A)}, Kazuyoshi Yadomi^{B)}, Kazunari Yamada^{A)}, Shigeru Yokouchi^{A)}, Tamaki Watanabe^{A)}
^{A)} RIKEN Nishina Center, ^{B)} SHI Accelerator Service Ltd., ^{C)} CNS, the University of Tokyo 2-1 Hirosawa, Wako-shi, Saitama, 351-0198

Abstract

The yearly status report (July 2009-July 2010) of the ring-cyclotron complex (RRC, fRC, IRC, SRC) in RIKEN RI beam factory is provided.

理研リングサイクロトロン(RRC, fRC, IRC, SRC)の運転報告

1. はじめに

理研 RI ビームファクトリー(RIBF)で現在稼働中 の4台のリングサイクロトロン群は 1986 年完成の 理研リングサイクロトロン(RRC, K 値 540 MeV)と、 2004-2006 年に相次いで完成した中間段リングサイ クロトロン(IRC, K 値 980 MeV)、周波数固定型リン グサイクロトロン(fRC, K 値 580 MeV)、そして最終 段にある 6 基の超伝導セクター電磁石をもつ超伝導 リングサイクロトロン(SRC, K 値 2500 MeV)から構 成されている。重イオンリニアック(RILAC)と AVF サイクロトロン(AVF)を入射器として、従来の施設 では軽い元素に限られていた RI ビームをウランま での全元素に渡って最大強度で発生させる事が可能 になった。本稿では 2009 年 7 月から 2010 年 7 月ま で約一年間の4台のリングサイクロトロンの運転状 況を報告する。

2. 施設の配置と加速モード

図1に RIBF 加速器群の配置図を示す。

図1:理研 RIBF ファクトリーにおける加速器群の配置図。

現在2つの入射器(RILAC, AVF)と4つのサイクロト ロン(RRC, fRC, IRC, SRC)の計6つの加速器が配置 されているが、それらの使用組み合わせは加速する イオンの質量電荷比と必要エネルギーによって使い 分けられている。現在 RIBF で使用しているイオン の加速モードは以下のように分類される。

- 加速モード1: AVF-RRC
- 加速モード 2: AVF-RRC-SRC
- 加速モード 3: RILAC-RRC
- 加速モード4: RILAC-RRC-IRC-SRC
- 加速モード 5: RILAC-RRC-fRC-IRC-SRC

入射器に AVF を用いた周波数可変の加速モード 1, 2 では種々の軽イオン(A/q=2)を核子当り最大 440 MeV まで加速できる。また、加速モード 3,4(周波 数可変)によってクリプトンまでの様々な重イオン ビームを核子当り最大 400 MeV まで加速する事が 可能である。更に重いイオン、すなわちウランやキ セノン重イオンを加速する場合は周波数固定の加速 モード 5 を使用し、核子当り 345 MeV の加速が可 能となる。

3. 運転状況

それぞれのリングサイクロトロンのこの一年間の 運転状況を円グラフにまとめた(図 2)。中心から 入射加速器、実験コース、fRC, IRC, SRC の使用有 無,そして加速粒子が書かれている。円周方向が使 用時間を表しており、1周長が RRC 使用時間、 5238 時間に等しい。全ての加速モードで RRC を使 用しているのでこれは施設の使用時間を表している。 例えば²³⁸Uの加速においては RILAC を入射加速器 として使用し、RRC, fRC, IRC, SRC の全てを使用す る加速モード 5 で運転を行い、加速器調整(Tune)に 801 時間を要し、BigRIPS を用いた物理実験には 287時間供給された。

図2:リングサイクロトロンの2009年6月-2010年7月の運転状況。

加速モード	ビームコース	各コース実験数	加速粒子&エネルギー (MeV/u)	ビーム要求量 (pnA)	照射時間(h)	全体比率(%
5)RILAC-RRC-IRC-IRC-SRC	BigRIPS	2	238U-345	10	287	10.7
	SHARAQ	1	α−320	1000	280	10.5
4)RILAC-RRC-IRC-SRC	BigRIPS	2	48Ca-345	250	663	24.9
	BigRIPS	1	180-345	500	210	7.9
3)RILAC-RRC	E6(RIPS)	7	58Ni-63	200	488	18.3
			48Ca-63	250		
			40Ar-63	800		
			23Na-63	1000		
	E5a		238U-10.75	2		
	52		84Kr-36.1	1		
	EJA		84Kr-39	1		
1)AVF-RRC	E6(RIPS)	14	40Ar-95	80	740	27.7
			130-115	470		
			13C-100	500		
			H2	0.1		
	Е5Ь		56Fe-90	<10		
			40Ar-95	<10		
			20Ne-135	<10		
			13C-100	<10		
			12C-135	<10		
	E3b		14N-135	500		

表 1:この一年間に行われたマシンタイムで加速したイオンビームを加速モード毎にまとめた。ビーム調整、マシンスタディの時間は除外してある。

図 3:⁴⁸Ca(左図)及び ²³⁸U(右図)の BigRIPS へのビーム供給強度の時間推移。⁴⁸Ca のマシ ンタイムはビーム強度も増え、150-200 pnA を維持供給。途中で強度が減っているのはユー ザー側の要求によるものである。²³⁸U については最大 0.8 pnA の強度で取り出す事に成功して いるがイオン源、RF の安定度に問題があった。

更に表1にはこの一年間に加速したイオンビーム の一覧を示す。まず2009年10/16-22にかけて¹³⁶Xe ビームの加速テストを行い加速器グループで新規開 発中のガス荷電ストリッパーのテスト実験を行った。

2009 年 10/24-11/12 には 320 MeV/u の α ビームを 加速し、東大 CNS との連携研究により導入されて いるスペクトロメータ SHARAQ へと供給した。放 射線の問題から適時ビームスリットとビーム減衰器 を用いてビーム電流を抑えながらも、1000 pnA まで のビーム供給に成功している。飛程の長いαビーム 特有の問題としてファラデーカップでの電流測定が 正確に行えず、カップに新規タンタル板を取り付け る等の措置が取られた。2009 年 11/16-12/24 は ²³⁸U の SRC からの取り出しを行い、BigRIPS へと供給し た。各サイクロトロンにおけるビームパラメータの 調整により SRC での取り出しウランビーム電流は 従来の約2倍の0.8 pnA まで増強されているがイオ ン源、RF の更なる安定化が課題として残っている。 2009 年 12/14-28 そして 2010 5/1-6/22 には 345 MeV/uの⁴⁸Ca ビームの SRC 取り出し、BigRIPS へ の供給を行った。各サイクロトロンにおけるビーム パラメータの調整により、⁴⁸Ca の SRC からの最大 取り出しビーム電流は 230 pnA まで増強され、5月 からのマシンタイムでは約1ヶ月に渡り 200 pnA を 安定に供給し、本格的実験利用が実現された[1]。 ⁴⁸Ca 及び²³⁸Uの BigRIPS へのビーム供給強度の時間 推移を図 3 に示す。2010 年 6/22-7/1 にかけて初の 345 MeV/u¹⁸O ビームの供給を行い、約 500 pnA の ビームが安定に供給されたが BigRIPS 標的近傍にお ける真空リークにより予定より数日早い打ち切りと なった。

その他マシンタイム外で起こった大きなトラブル として、2009 年 7 月末に発生した SRC の EBM 冷 却配管破損による SRC 内部での水漏れがあった。 この水漏れでは各バレー部、3台の共振器、フラッ トトップ共振器がほぼ水没、約 20 トンもの水に浸 された。復旧には実に2ヶ月弱の時間を要したが、 バレー部、共振器、診断系、高圧部についての取り 外し、洗浄、乾燥作業を行い順次問題の解決を行っ た。10月初旬には1週間程度の共振器焼き出しを 行い、10月末のマシンタイムは問題なく行われた。

4. 運転体制

全リングサイクロトロン運転時において、運転員 1名が独立したリニアックのコントロール室でイオ ン源とリニアック運転制御系の監視を行っている。 一方リングサイクロトロンのコントロール室には3 名の運転員を配置して、最大4台のリングサイクロ トロンの運転監視を行う。互いに連携しながら円滑 な運転が行われている。運転シフトは約 12 時間間 隔の2交代制でリニアック6名、リングサイクロト ロン12名の総勢18名の運転員によって運転されて いる。RI ビームファクトリー以外の運転時には、 運転員は加速器運転以外に照射実験等の実験サポー トも実施している。

大強度・高安定化に向けた取り組み

RILAC入射用リバンチャーによるバンチ効率改善 の為、二重リバンチャーシステムを採用し、新規リ バンチャーの設計が行われた。この新リバンチャー の敷設作業は2010年2月に行われ、今後のマシン タイムにおけるリバンチング効率の向上が期待され ている。AVFでは中心領域の改造でK値、入射効 率の増強を図っている[2]。RRCについては常に中 心的な加速器であり、その性能を上げるための調整 作業が進められている。また、入射器系第2イオン 源室が完成し、新しく28GHz超伝導ECRイオン源 が配備され、今秋の稼動を目指し試験実験が行われ ている[3]。並行してAVF室への新入射器 RILAC2 の配備、各種試験、そして RILAC2 から既存 RIBF へのビーム輸送系の建設も行われている[4]。その他、 来るべき大強度ウランビームに耐え得る荷電スト リッパーの研究開発等、更なる大強度ウランビーム 加速への準備が進行している。

6. まとめ

RI ビームファクトリーではこの1年間(2009年7 月-2010年6月)に4種類の加速モードによる運転が 行われ、その総運転時間は5238時間であった。そ の中ではSHARAQ, BigRIPSを用いた5回のマシン タイムも行われ4台のサイクロトロンを駆使し、各 種重イオンビームを加速供給する事が出来た。特に 2010年5、6月には⁴⁸Ca-345MeV/uビームを約200 pnAを保ちながら約1ヶ月に渡り安定供給する事に 成功し、この世界唯一の大強度ビームの本格的な原 子核物理実験への利用が実現された。現在新入射器 の設置、荷電ストリッパーの開発など RIBFの更な る大強度化に向けた取り組みも進行している。

参考文献

- [1] M.Kase, et al., "理研 RIBF における ⁴⁸Ca ビームの加速", in this proceedings.
- [2] H.Imao, et al., "理研 AVF サイクロトロンの運転状況", in this proceedings.
- [3] T.Higurashi, et al., "理研新超伝導 ECR イオン源の開発 研究", in this proceedings.
- [4] E.Ikezawa, et al., "理研重イオンリニアックの現状報告", in this proceedings.