BREAKDOWN CHARACTERISTICS IN DC SPARK EXPERIMENTS OF COPPER FOCUSING ON PURITY AND HARDNESS

Kazue Yokoyama^{1,A)}, Toshiyasu Higo^{A)}, Shigeki Fukuda^{A)}, Yasuo Higashi^{A)}, Shuji Matsumoto^{A)},

R. Santiago Kern^{B)}, Chiara Pasquino^{B)}, Sergio Calatroni^{B)}

^{A)} High Energy Accelerator Research Organization (KEK),

1-1 Oho, Tsukuba, Ibaraki, 305-0801

^{B)} European Organization for Nuclear Research (CERN)

23 Geneve, Switzerland, CH-1211

Abstract

To investigate the breakdown characteristic of differences in purity and hardness, three samples of copper, oxygenfree copper (OFC), 7-nine large-grain copper and 6-nine hot-isotropic-pressed copper, were tested with the DC spark system at CERN. Measurements of beta, breakdown fields and breakdown probability are presented in this paper.

純度と硬度の異なる銅サンプルを用いたDC放電実験

1.はじめに

Nextef (New X-band Test Facility)では、加速器用途 を念頭にした異なる材料での高電界放電特性に関す る基礎研究を行っている^[1]。加速管材料としては、 耐高電界、つまり低放電頻度(10-7程度)、放電後 の低ダメージ等が望まれる。RF空洞内の放電の研 究は、長年 SLAC National Accelerator Laboratory (SLAC)で行われており^[2]、Nextefでも狭導波管を使 用したRF放電実験を行っている^[2]。一方、DC放電 の研究は、埼玉大学やEuropean Organization for Nuclear Research (CERN)で行われている^[3, 4]。CERN では、電極間にDC高電圧を印加し表面をプロセシ ング後、β値(Field enhancement factor)や放電電界、 放電頻度の測定を行い、多くの金属で耐放電特性の 系統的評価を行なっている。最近では、高電界加速 管材料の候補として、銅とモリブデンを対象にした 研究を行っている。

我々は、これまでは高電界RFを印加して物質の 放電特性を実験的に調べてきたが、特定の材料に対 して純度や硬度、結晶構造によって放電特性に違い があるのかどうかに興味を持った。これまでの放電 サンプルの観測結果から、放電痕と金属表面の欠陥 や粒界には何かしら関係があると思われる。一般に、 不純物元素濃度、主に酸素に代表されるガス元素濃 度が低い方が放電しにくい^[5]。また、熱間等方加圧 法であるHIP(Hot Isostatic Pressing)で製作した材料な ど硬度の高い物質では内部欠陥が圧縮され(結晶粒 界での不純物空孔の減少)離脱ガスが減る傾向にあ る。最近では、結晶面方位によっては放電しにくい 傾向があるとも言われている^[6]。そこで、まずは CERNで行われているような比較的短期間でサンプ ル試験を行うことが可能であるDC放電実験装置を 用いて、純度や硬度、結晶構造によって放電特性の 違いが調べられるかどうかを探ることにした。

今回、純度に対する放電特性を比較するために、 加速管材料として一般的である無酸素銅(OFC、 class1)と純度99.99999%の7Nの高純度銅のサンプ ルを用意した。また、硬度に対しては、純度 99.9999%の6NのHIP材を用意した。上記のサンプル に対してCERNのDC放電実験装置を用いて、ベータ 値、放電電界値、放電頻度の測定を行ったので、こ れらの実験結果について報告する。

2.DC放電実験装置セットアップ

2.1 セットアップ

図1にDC放電実験システムの概要図を示す。こ の装置はもともとは、Compact Linear Colider(CLIC) の加速管用材料探索のため開発されたもので、多く の材料に対しての放電試験が行われた^[7]。図2のよ うに、真空チャンバー(~10⁻¹⁰ mbar)内に、同じ材 料の電極がセットアップされている。アノードチッ プは先端が半球形状をしており、カソード側は板状 の試験サンプルである。アノード—カソード間の距 離dは約20 μmで、試験開始時に電極間を接触させた 時をd=0として電極間隔をμmオーダーで調整できる。 図1でS1を閉じてコンデンサーC1に充電された電 荷がスイッチS2の接続時間の間(約2秒:C1、C2、 R2の時定数で決まる)印加されることにより、電極 間に電界E(=直流印加電EV/d)がかかる。このと きの蓄積エネルギーは、印加電圧4 kV(電界約200 MV/m) に対して、約220 mJである。放電時にCTを 流れる電流と真空値の閾値で放電を識別している。 サンプルはあるスポットでの試験が終了したら次の スポットに移動する。図2右写真に試験後のサンプ ルを示す。1サンプルあたり約10スポットの試験が 可能である。

Fowler-Nordheim理論では、一般に測定される放

¹ E-mail: kazue.yokoyama@kek.jp

出電流は巨視的電場を*E*_M,個々の突起で増大した 微視的電場を*E*_mとすると、物質表面上の微視的突起 の形状や性質によって

 $E_{\rm m} = \beta E_{\rm M}$ 式(1) という関係を仮定する。ここで、β値は電界増強因 子係数(Field enhancement factor)と呼ばれる。このモ デルは、実際の金属加工物の表面には様々な微視的 突起が散在し、滑らかな表面を仮定した際の電界 E_Mよりもはるかに大きい表面電場E_mになっている と考えるとわかりやすい。アノード側では、カソー ドからの電子衝撃による自然蒸発が起き、カソード 側では、微視的突起で過度な内部加熱が起き自然蒸 発が起きていると考えられる。つまり、この装置で は、試験サンプルのカソード側での微視的突起に電 場がかかり電子が放出され、これが電界放出電流 (Field Emission Current、以下FEと略す)として測 定することができる。FEは図1中のS1、S2を解放 してS3を閉じてマルチメーターAで測定する。印加 電圧を上げていくと、ある電圧から急激に電流密度 が増える。この電流が、10⁻¹¹から10⁻⁸ Aの領域で、 Fowler-Nordheim式にフィットして試験サンプルの β 値を求める。

図1.DC放電セットアップ。

図2:左写真は真空チャンバー内セットアップ、右写真 は放電試験後に取り出した7N-LG_Cu (45)のサンプル。 サンプル上縦並びの白いスポットが放電痕。

2.1 サンプル

今回試験した3つのサンプルを表1に示す。無酸 素銅(OFC、class1)をリファレンスにして、7Nの 高純度銅、硬度の高いHIP材を比較する。サンプル 表面はダイヤモンドターニングで鏡面仕上げした。 また、エッチング表面との違いを見るために、 6N_HIP_Cu (46)では両面を備えているサンプルを作 成した。

純度に関しては、硫黄Sの成分に違いがあるのが 特徴である。またHIP処理をすることにより、硬度 は加速管で一般的に使用されるOFCの2倍程度にな る。

÷ .			. ف			++
走1	++	`'	7	11,	۲r	电心
1.5.1		~	~ /	~~		+.

sample name		6N_HIP_Cu	7N_LG_Cu	OFC_Class1				
		(46)	(45)	_Cu (47)				
purity		99.9999%	99.99999%	99.996%				
	Bi	< 0.001	< 0.001	3				
	Pb	0.001	0.002	3				
impurity	0	<2	0.5	3				
(ppm)	Р	0.003	0.001	<3				
	S	0.045	0.05	10				
	Zn	< 0.01	< 0.01	<1				
grain size [mm]		<1	$10 \sim 30$	<1				
Hv		80~90	30~40	30~40				
			(assume)	(assume)				
material treatment		HIP in Ar	650C, 2hr	650C, 2hr				
		800 degC, 1200	anneal	anneal				
		kg/cm ² , 2 hr						
shaping		wire cut	wire cut	wire cut				
surface finish		etching (2 µm)	diamond	diamond				
		and	turning	turning				
		diamond	_	_				
		turning						
Aim		effect of hard	purity,	reference				
		material	grain size	material				

3.結果と考察

3.1 解析手法と実験目的

各材料で幾つかのスポット(多くは3点)でそれぞ n_{β} 値とその直後の放電電界 E_{M} を交互に測定する。 各々の測定でβ値が低ければ次に発生するE_Mは高く なり、 β 値が高ければ次に発生する E_M は低くなると いったデータがコンディショニングとともに得られ る(図3参照)。CERNやその他でのDC放電実験か ら、コンディショニングが進むとこれらの積 (βE_M 値)は一定に落ち着くようになる。測定データにば らつきが大きく、理論的にも説明されていないが、 DC放電実験では βE_{M} =const. とするのが一般的であ る。一方でこのことから、 E_{M} とその放電直後の β 値 との間には、相関がない。つまり β 値がわかれば、 放電電界E_Mを推測することができるが放電直後のβ 値を予測することはできないといえる。本試験では コンディショニングを進めて *βE*M値と150~300 MV/m 領域での放電頻度をもとめ材料や表面の違い による差異を探るのが目的である。

3.2 OFC_Class1

リファレンスサンプルとしたOFC_Class1_Cu (47) の結果について説明する。図3に3つのスポットで それぞれβ値とその直後の放電電界*E*_Mを交互に測定 した推移を示す。CERNではこれまでの多数の試験 結果から、OFC Class1に対して、

 $E_{\rm m} = 10.8 \pm 1.7 \, [{\rm GV/m}] = \beta E_{\rm M}$

であり、β=77±27.7、E_M=159±50.9という結論を出している^[7]。

図 4 (a)に本実験でのコンディショニング履歴を、 図 6 (a)に得られた βE_M 値を示す。これらの結果から、 初期の β 値と E_M の変化は異なるものの最終的には βE_M 値が一定値付近で落ち着いていくとみなせる。 最初の10点目付近までをコンディション過程として、 以降の10点に対して βE_M 値を算出すると、順に15±3、 14±2、15±4である。絶対値の違いはデータ数が少な いことによる統計的なばらつき、同じサンプルで あってもスポット表面の違いがあること、また、 CERN製サンプルとの加工方法や表面処理の違いに よるものと思われる。また、図 4 (a)の約200回の放 電に対して放電電界 E_M を算出すると、176±49 MV/m である。他のスポットでも同様な値が得られている。

コンディショニング後(約200回放電)、放電頻度 (BDR: Break-Down Rate:=放電発生回数/同電圧で の印加回数)の測定を行った。図7に結果を示す。 BDRは、一般に、電界の累乗関数(E^{α})を示す傾向 がある。例えば、加速管では、 α は約30程度である と言われている^[8]。CERNのこれまでのDC放電実験 では α は10~15と言っているが、今回の実験では α は 20~26であった。どちらのDC放電実験でも α は加速 管よりも低い値を示している。また、Nextefでの狭 導波管試験では、 $\alpha=20~40$ という値を得ている^[1]。

これらの値を比較するためには、DC放電とRF放電 の違いの吟味、DC放電実験間の比較においても同 じ材料・表面処理・加工方法・放電エネルギーなど を考慮して評価をする必要がある。

3.3 6N_HIP

サンプル6N_HIP_Cu (46)について、エッチング面 と鏡面の違いについて述べる。 β 値とその直後の放 電電界 E_M を交互に測定した推移を図5(a)にエッチ ング面、(b)に鏡面について示す。また、図6(b)に は βE_M 値を示す。エッチング面と鏡面を比較すると、 鏡面の方が初期の放電電界 E_M が高い。また、初期 の段階から βE_M 値がある値付近を中心に落ち着いて 見えるのはHIP材の特徴と思われる。他の3つのス ポットでも同様な傾向がみられた。図7(b)にBDR 測定結果を示す。同じスポットで2回づつ測定した。 エッチング面の α は14~17に対して、鏡面の α は 10~11と低い値を示しており、鏡面の方が、放電頻 度が低いと言える。

3.4 7N_LG

サンプル7N_LG_Cu (45)について、純度について 考察する。初期のβ値は低く、放電電界E_Mが高いの が特徴である。しかし、コンディショニングの傾向 はOFC_Class1に良く似ており、最終的な平均放電電 界 E_M は同じレベルになっていることがわかる。また、BDR特性についても、 α は同じ程度である。

3.5 考察

今回の測定結果を表2に示す。限られたサンプル 数での試験ではあるが、コンディショニングの始め の段階とコンディショニングの進んだ段階で以下の ようなことが言える。

・初期の β 値と放電電界 E_M はOFC Class1よりも、高 純度銅、高硬度銅の鏡面の方が、 β 値は低く、放電 電界 E_M が高い。

・同じ高純度銅、高硬度銅材料でもエッチング面で は初期のβ値は高く、放電電界も低い。この差異は 興味深い。

 ・OFCや高純度銅よりもHIP材鏡面仕上げの方が *βE_M*値が低い。

・コンディショニングを進めていくと、OFCに関しては純度には関係なく、最終的にはOFC Class1と同じレベルの平均放電電界になる。放電特性のα値も同程度である。

・コンディショニングスピードに関しては、OFC HIP処理材の方が早い。

・コンディショニングを進めていくと通常のOFCよ りも OFC HIP処理材の方が平均放電電界のレベル が高い。

・OFCや高純度銅よりもHIP材鏡面仕上げの方が放 電特性の α 値が低い。

・本DC放電の結果からは OFCのHIP処理材は耐放 電性に優れているように見受けられる。

4.まとめと今後の課題

DC放電実験では、データのばらつきが大きいた め数値結果を絶対値として評価するのは難しい。し かし、今回の測定データでは、純度の違いは明らか ではないが、硬度の違いは傾向として現れている。 HIP処理材で製作した狭導波管を用いたRF放電試験 を行い、これまでのOFC銅製狭導波管試験のデータ と比較すれば、放電特性の差異が明らかになるだろ う。また、放電現象をより理解するために放電試験 後の表面観察も進めている。

参考文献

- 横山 和枝、他、"狭導波管を用いた銅及びステンレス 材での高電界RF放電特性の比較"、電気学会Vol. 130 / No. 12 / Sec. A.
- [2] V. A. Dolgashev, et al., "RF breakdown in normal conducting single-cell structures", Proc. of 2005 Particle Accelerator Conference, Knoxville, Tennessee, pp.595-599.
- [3] 山本貴志、他、"精密機械加工無酸素銅電極の真空中絶 縁破壊特性", Proc. of UHVT2004, 11-12 March 2004, Tsukuba, Japan.
- [4] A. Descoeudres, et al., "dc breakdown conditioning and breakdown rate of metals and metallic alloys under ultrahigh vacuum", Phys. Rev. ST Accel. Beams 12, 032001, 2009.

[5] 青木 庄治、他、"加速器用無酸素銅のクラス判定試験 と金属組織", 2003 高エネ研メカ・ワークショップ報 告集, 17 April 2003. http://lcdev.kek.jp/MechWS/2003/18.Aoki.pdf

[6] M. Aicheler, "Surface thermal fatigue in uniaxial and biaxial

loading", Presented at CLIC09 Workshop, October 2009, Geneve, Swaziland. http://indico.cern.ch/contributionDisplay.py?contribId=150 &confId=45580

- [7] A. Descoeudres, et al., "Investigation of the dc vacuum breakdown mechanism", Phys. Rev. ST Accel. Beams 12, 092001, 2009.
- [8] A. Grudiev, "Comprehensive analysis of rf test results", Presented at 2nd Collaboration Meeting on X-band Accelerating Structure design and test programs, 13-15 May 2008, Tsukuba, Japan.

http://indico.cern.ch/getFile.py/access?contribId=34&sessio nId=21&resId=1&materialId=slides&confId=30911

<mark>⊿</mark> 0 25

10

15

20

10 nb of events 図5. βとその測定直後の放電電界E_Mの推移。(a) 6N_HIPエッチング面、(b) 6N_HIP鏡面, (c) 7N_LG 鏡面。

20

25

15

10

表2.各パラメータ測定結果のまとめ(太字は括弧内表記のスポットで測定したデータで、斜字は他のスポットで確認 したデータ)

sample name	6N_HIP	_Cu (46)	7N_LG_Cu (45)	OFC_Class1_Cu (47)
surface condition	etched (spot2)	mirror (spot13)	mirror (spot9)	mirror (spot3)
β before 1 st spark	30, 42, 33	22, 21, 24	11, 22	42, <i>43, 15</i>
1 st BD E-field [MV/m]	246, 296, 302	412, <i>315, 317</i>	296, 262	129, 104, 309
Max. BD E-field [MV/m]	246 (1 st),	464 (2^{nd}) ,	466 (3 rd),	292 (3 rd),
括弧内はイベントの番号	$406 (2^{nd}), 302 (1^{st})$	$315 (1^{st}), 369 (2^{nd})$	546 (3 rd)	$455 (7^{th}), 429 (4^{th})$
average β after a few sparks	73±23	68±13	94±35	73±20,
(±1σ)				87±29, 68±26
average BD E-field after a few	199±54	173±36	178±58	208±53,
sparks [MV/m]				182±35, 225±74
$\beta E_{\rm H}$ after a few sparks [GV/m]	14±3	11±1	15±5	15±3,
<i>γ</i> − _M				<i>15±</i> 4, <i>14±</i> 2
average BD E-field during	181±51	195±58	175±57	176±49
conditioning (~100 sparks) [MV/m]				178±65
$\alpha (BDR \propto E^{\alpha})$	17, 15	11, 11	24, <i>23</i>	20, 26