DESIGN OF L-BAND POSITRON CAPTURE ACCELERATING STRUCTURE

Kazuyoshi Saito^{1A)}, Hideaki Nishiuchi^{A)}, Hiroaki Sakurabata^{A)}, Mamoru Watanabe^{A)}, Hideki Omokawa^{A)},

Yoshifumi Hojo^{A)}, Toshiyasu Higo^{B)}, Takuya Kamitani^{B)}, Shuji Matsumoto^{B)}, Kazue Yokoyama^{B)},

Takashi Sugimura^{B)}, Satoshi Ohsawa^{B)}, Kazuhisa Kakihara^{B)}, Mitsuo Ikeda^{B)}

^{A)} Hitachi Ltd., Power Systems

7-2-1 Omika-cho, Hitachi-shi, Ibaraki-ken, 319-1221 Japan

^{B)} High Energy Accelerator Research Organization (KEK)

1-1 Oho, Tsukuba-shi, Ibaraki-ken, 305-0801 Japan

Abstract

Super-KEKB project, the upgrade machine succeeding the present KEKB collider, has just started to target at a 40 times higher luminosity of 8×10^{35} cm⁻²s⁻¹. The corresponding bunch charge required for positron injection increases by a factor of 4. Therefore an adiabatic matching magnet with stronger solenoid field and L-band accelerating structures with wider beam apertures are being developed in order to improve positron capture efficiency at the downstream of a positron generating target. In this paper, electrical and mechanical design results are described, regarding a 2m-long accelerating structure with the beam aperture of 35mm. It is designed to be set inside solenoid magnets along the beam line. A short filling time of the accelerating structure, 1.3µs, is realized to suppress RF breakdowns and multipactor discharges under the high magnetic field.

陽電子捕獲用Lバンド加速管の設計

1. はじめに

高エネルギー加速器研究機構(KEK)では、Bファ クトリのルミノシティを40倍の8×10³⁵cm⁻²s⁻¹に増強 するSUPER-KEKB計画が進行中である。この目標を達 成するにはビーム電流を2倍に増強し、衝突点での ビームサイズを1/20に縮小する必要がある。その際 の入射ライナックの課題の1つは、陽電子ビームの バンチ電荷量を現状の4倍、エミッタンスを1/200 に性能向上する事である^[1]。前者は陽電子捕獲効率 の向上、後者はダンピングリングの設置[2]により実 現される。陽電子捕獲効率を向上するためには、陽 電子生成用ターゲット直後のソレノイド収束磁場の 強度を上げ、下流の収束磁場分布に緩やかな変化で 断熱的に接続する必要がある。それとともに、現在 のSバンド加速管の代わりにビーム開口孔が大きな Lバンド加速管を用いて、生成直後のエミッタンス とエネルギー分散が大きな陽電子ビームを効率良く 捕獲し、デバンチしないように初期加速する必要が ある。

2010年2月、上記の陽電子捕獲用Lバンド加速管 の一台目を日立製作所が受注した。これまでに、レ ギュラーセル部、カップラーセル部、入出力テー パー導波管の電気設計を完了し、加速管本体および ビームラインに設置する際に必要となる架台も含め た機械設計を進めている。また、それと並行して、 入出力カップラーセル及び隣接する上下流のレギュ ラーセルの試作テストピースを設計製作し、その高 周波特性の評価試験の準備を進めている。本報告で は加速管の電気設計結果と機械設計の進捗状況、及 び試作テストピースとその試験内容に関して纏めた。

表1 加速管の設計仕様(【】内は設計値)

項目	設計仕様
構造・加速方式	ディスク装荷・進行波型、 定加速勾配方式
運転周波数	1298.1818 MHz
運転温度	30±0.1 ℃
加速モード	2π/3 rad/cell
有効加速長	2 m
セル数	カップラーセル 2+レギュラーセル 24
入力高周波電力	15 MW, 2μ s
加速電場	>10 MV/m 【12 MV/m】
漏洩電磁場	<-60 dB 【真空排気ポート:-65 dB】
セル長	76.977 mm
ディスク厚み	10 mm
ディスク内直径	$>$ 35 mm [35.002 \sim 39.434 mm]
シリンダ内直径	178.534(下流) ~ 179.145(上流) mm
Q值	20650(下流) ~ 20670(上流)
シャント インピーダンス	47.58(下流) ~ 45.72(上流) MΩ/m
群速度/光速度	0.388(下流) ~ 0.611(上流) %
充填時間	<1.5 µ s [1.3 µ s]
減衰定数	0.26
VSWR	<1.2 [1.1]

¹ E-mail: kazuyoshi.saito.pq@hitachi.com

2. 加速管の電気設計

陽電子捕獲用Lバンド加速管の設計仕様を表1に 示す。本加速管は運転周波数1298.1818MHz、加速 モード2 π /3、カップラーを含めた全セル数26で全 長2mの定加速勾配型の進行波加速管である。加速 電場の設計値は10MV/m以上であるが、高磁場下での マルチパクタによる高周波放電を回避する短パルス 運転が可能なように、加速管充填時間は1.5 μ s以下 に抑えた。また、ビーム開口孔としてディスク内直 径を35mm以上に設計し、陽電子ビームに対して大き なアクセプタンスを確保した。

2.1 レギュラーセル部

ディスク厚みは10mmに固定した。まず、2次元軸 対称電磁場解析コードSUPERFISH^[3]を用い、無限周 期境界条件下でディスク内直径の関数として、シリ ンダ内直径、群速度、Q値、シャントインピーダン スを求めた。これにより、セル毎にディスク内直径 に対してシャントインピーダンスと高周波消費電力、 更に加速電場が算出できる。次に、加速電場の初期 値を仮定して、セル全体が定加速勾配になるように 各セルのディスク内直径を逆算する。最後に、入力 高周波電力15MW、ディスク内直径35mm以上、加速管 充填時間が1.5 μ s以下の条件下で加速電場を最大化 し、ディスク内直径の関数として各セルのパラメー タを決定した。得られた各セルの設計パラメータを 図1に示す。15MW入力時の加速電場が12MV/m、充填 時間1.3 μ s、減衰定数0.26の加速管が設計できた。

また、異なる二つの境界条件で得られる定在波電磁 場を線形結合して進行波を評価し、ディスク内径側 の曲率半径5mmの先端部付近に生ずる最大表面電場 と加速電界の比が最大2.1に収まることを確認した。

2.2 カップラーセル部

カップラーセルは入出力導波管とインピーダンス 整合を実現するとともに、加速管内の真空排気の為 に導波管と反対側に真空排気ポートを設ける。そこ で、3次元電磁場解析コードHFSS^[4]を用いて、カッ プラーセルの構造とパラメータを決定した。図2に 設計結果の入力カップラーセルの断面を示す。入力 導波管との結合用アイリス窓の幅60mmとセル内直径 173.82mmは、Kvh1法^[5,6]を用いて最適化した。アイ リス窓のノーズ部の曲率半径9mmは、Cバンド加速 管での実績^[7-9]に基づき周波数でスケールして決定 した。また、真空排気のコンダクタンス50L/s以上 を維持しつつ、セル内の電磁場分布の対称性の改善 と真空排気ポートへの漏洩電磁場強度を-60dB以下 に抑制可能な構造を検討した。その結果、真空排気 ポートのアイリス窓の幅を導波管側と同じ60mmに設 計し、その下流でテーパー状に幅22mmまで縮小して 断面積(22mm×67mm)で長さ40mmの矩形ダクトを形成 する構造を採用した。同様に出力カップラーセルを 設計した結果、アイリス窓の幅は56mm、セル内直径 は174.25mmとなった。

図2 設計結果の入力カップラーセルの断面

次に、カップラーセルの高周波伝播特性をHFSSで 解析し評価した。図3に解析体系を示す。入力カッ プラーセル、隣接するレギュラー第1セルを3セル 分、更に入力カップラーセルと同形の出力カップ ラーセルを配置して、入力カップラーセルの高周波 伝播特性を評価した。図4に解析結果を示す。反射 特性S11を見ると、運転周波数1298.2MHzにおいて S11は-20dBでVSWRは1.2である。ただし、解析体系 にはレギュラーセルが3セルしか配置されていない ため、反射による定在波の影響が大きく現れており、 実際の24セルではVSWRは1.1程度に低減できると考 える。残る反射係数0.05程度は、製作最終段階の ディンプルチューニングで抑制する。透過特性S21 を見ると、周波数範囲1295~1300MHzにわたり十分 に広帯域化できていることが確認できる。透過特性 S31は真空排気ポートへの漏洩電磁場強度であり、 設計仕様値の-60dB以下を満足する-65dBを示してい る。同様に、出力カップラーセルの高周波伝播特性 を評価して問題ないことを確認した。

最後に、カップラーセル内の電磁場分布の対称性 を評価した。図3の解析体系で求めた入力カップ ラーセル内の電磁場分布を図5に示す。比較のため 真空排気ポートが無い場合の電磁場分布も示した。 真空排気ポートが無い場合には電磁場分布の中心が 導波管側に9mmずれるが、真空排気ポートの存在で 電磁場分布の中心のずれが1mmに低減する。また、

|Ez(x=10mm)-Ez(x=-10mm)|/Ez(x=0mm) で定義した電磁場分布の非対称度は、真空ポートの 存在で2.3%から0.4%に改善する。この程度に改善 できれば実用上は問題ないと判断した。なお、電磁 場位相に関しては真空排気ポートによる改善効果は 無いが、電磁場位相の非対称度はもともと1°以内 に十分収まっており問題ない。

2.3 入出力テーパー導波管

Kyhl法が適用可能である等の設計の簡便性も考慮 し、カップラーセルはレギュラーセルと同じ長さに 設計している。したがって、カップラーセルに段差 なく直接接続できる導波管サイズは内法が66.98mm ×140mmであり、Lバンドの標準規格の導波管WR650 (内法:82.55mm×165.10mm)に接続するためには、 テーパー導波管が必要である。カップラーセル調整 に与える影響を十分小さくするためには、テーパー 導波管のVSWRを1.015以下に設計する必要がある。 一方、本加速管を設置するビームライン周辺の空間 的制約により、両端フランジ長70mmを含めて全長を 350mm以下に制限する必要があった。HFSSで解析し た結果、図6に示すようにテーパー長265mm(全長 335mm)で上記条件を満足する設計が可能であるこ とが分かった。

3. 加速管の機械設計

現在、加速管本体およびビームラインに設置する 際に必要となる架台も含めた機械設計を進めている。 ビームライン上に設置した際にソレノイド電磁石の 内側に挿入が可能なように、加速管本体とその支持 構造を直径350mm以内に収めることが必要である。 図7に加速管本体の構成を示す。以下、その主要部 の機械設計の概要を述べる。

3.1 レギュラーセル部

セルの材質は、無酸素銅クラス1を使用する。レ ギュラーセル部は、上流から下流に向かって変化す る約180mmの内直径に対して外直径220mmと20mm程度 の肉厚により、比較的軽量であるが2mの全長の2 点支持に対しても十分な剛性を持っている。冷却水 路は外周に長手方向にロウ付けする4系統の無酸素 銅製の冷却パイプで形成し、余裕を見た想定最大電 力損失2kWに対して加速管外表面の長手方向にわた る温度差が1℃以内になるよう除熱する。レギュ ラーセルは、ディスクとシリンダを一体化したカッ プ型の構造で無酸素銅材から削り出し、外周を仕上 げた後に鏡面加工により内面を0.1Raよりも良い面 粗度に仕上げる。鏡面加工されたカップ型のレギュ ラーセル22セルを事前にロウ付けされたカップラー セル部と同時にロウ付けにより接合し2mの完成品 となる。各セルは周方向に4箇所、セルの共振周波 数調整用に内壁面を外部から塑性変形させることが できるディンプル構造を持ち、押し引き両方向に調 整が可能な構造となっている。

3.2 カップラーセル部

セルの材質は、レギュラーセル部と同じ無酸素銅 クラス1を使用する。カップラーセル部は、導波管 取付け部を持つ必要があるため、カップラーに隣接 するレギュラーセル1セルを含む構造となっており、 加工に都合の良い複数の部品に分割された無酸素銅 材のセル部品、および、導波管フランジと真空フラ ンジから構成される。これらの部品をロウ付けによ り接合することによりカップラーセル部が完成する。 この後のレギュラーセル部とのロウ付けは上記の通 りである。冷却水路はレギュラーセル部の冷却パイ プを可能な限り延長するが、導波管ポートと真空排 気ポートのため、端部が十分に除熱できない可能性 がある。このため、カップラーのビームポート側端 面にもレギュラーセル部とは別系統の冷却水路を設 けることによりレギュラーセル部との温度差を1℃ 以内になるよう除熱する。カップラーセル部は、外 周、導波管ポートおよび真空排気ポートを一次加工 で仕上げた後にセル内壁面を0.1Raよりも良い面粗 度に仕上げる。カップラーセルもレギュラーセルと 同様に周方向4箇所に共振周波数調整用のディンプ ル構造を持つ。本加速管は陽電子捕獲用でありソレ ノイド電磁石中に挿入して設置する必要があるため、 据付時の最大張り出しはビーム軸を中心として直径 350mm以内に納める必要がある。このため、2.3節で 述べたテーパー状の変換導波管も導波管フランジに より本体とは分離可能な構造となっている。導波管 フランジは全てM0フランジ^[10]である。

4. 試作テストピースと試験内容

セル内面の加工精度の評価、ロウ付けの共振周波 数への影響把握、実測によるカップラーのアイリス 窓幅とセル内直径の最適化を目的に、試作テスト ピースでの高周波特性の評価試験を実施する。評価 試験の結果は実機加速管設計に反映される。試作テ ストピースとして、入出力カップラーを各1セル、 それと隣接するレギュラーセルを各5セル設計製作 した。

レギュラーセルの評価試験では、セル数やセルの 組合せを変えながら各励振モードの共振周波数やQ 値を測定し、セル内面の加工精度を評価する。また、 ロウ付け前後の測定結果の比較より、ロウ付けの影 響を把握する。一方、カップラーセルの評価試験で は、図8に示す試験体系でレギュラーセルと組み合 わせ、Kyhl法で共振周波数と結合係数を評価しなが

図8 試作カップラーセルの試験体系

ら、セルの追加工によりアイリス窓幅とセル内直径 を最適化する。

カップラーセルの初期寸法は追加工が可能なよう に、HFSSで求めた感度係数に基づき、アイリス窓幅 とセル内直径とも所定量だけ小さめに設計している。 そのため、初期寸法の近傍では共振周波数が最適値 である2π/3モードとπ/2モードの平均周波数から 2 MHz程度ずれており、Kyhl法で精度良く結合係数 を評価できない。そこで、図8に示すように、ビー ムポートに同調用プランジャーを挿入し共振周波数 のずれを補正できる構成に設計した。プランジャー 挿入による外乱でカップラーセルの蓄積エネルギー (R/Q)が変化し結合係数の測定精度が悪化する懸念 があったが、HFSSによる解析の結果、周波数補正量 2MHz程度ならば結合係数に関するKyhl角度の誤差 は2°以内に十分収まることが分かった。初期寸法 近傍でこの程度の誤差が存在することを認識して追 加工を進めれば、実用的に問題ないと判断した。

5. まとめ

SUPER-KEKB入射ライナックの陽電子捕獲用Lバンド 加速管の2m長プロトタイプ機を設計した。

- (1)陽電子捕獲効率向上のためディスク内直径が 35mm以上、高磁場下での高周波放電を回避する 短パルス運転が可能なように加速管充填時間が 1.5µs以下の条件で、15MW入力での加速電場が 12MV/m、充填時間1.3µs、減衰定数0.26の定加 速勾配型の進行波加速管を設計。
- (2) 3次元電磁場解析コードHFSSでカップラーセル と入出力テーパー導波管を設計し、チューニン グで抑制可能な反射レベルであるVSWR1.1程度を 達成。また、カップラーセルの電磁場分布の対 称性を改善し、真空排気ポートの漏洩電磁場強 度を-65dBに抑制可能なセル構造を設計。
- (3)レギュラー部はセル毎にディスクとシリンダを 一体化した構造で精密加工し、セル間でロウ付 けする構成を採用。各セルには一部壁面の押し 引きで共振周波数の微調整が可能なディンプル を具備。加速管本体と支持構造は直径350mm以内 に収め、ビームライン上に設置してソレノイド 電磁石の内側に挿入可能な構造で設計。

また、実機加速管の製作前に試作テストピースを用いた高周波特性の評価試験を計画。追加工前の初期 寸法でのカップラーセルのマッチングを、Kyhl法で 精度良く評価できる方法を考案した。

参考文献

- T. Sugimura, et al., "The Linac Upgrade Plan for Super-KEKB", Proceedings of IPAC'10, Kyoto, Japan, 2010, pp. 4290-4292.
- [2] M. Kikuchi, et al., "Design of Positron Damping Ring for Super-KEKB", Proceedings of IPAC'10, Kyoto, Japan, 2010, pp. 1641-1643.
- [3] K. Halbach and R. F. Holsinger, "SUPERFISH- A Computer Program for Evaluation of RF Cavities with Cylindrical Symmetry," Particle Accelerators 7 (1976) 2 13-222.
- [4] http://www.ansoft.com/products/hf/hfss/
- [5] E. Westbrook, "Microwave Impedance Matching of Feed Waveguides to the Disk-Loaded Accelerator Structure Operating in the 2π/3 Mode", SLAC-TN-63-103, 1963.
- [6] M. Chanudet, "Matching of the Coupler Cavity to Travelling Wave Structures at any Operating Mode", LAL/RT 93-06, 1993.
- [7] T. Kamitani, et al, "R&D status of C-band Accelerating Section for Super-KEKB", Proceedings of PAC'05, Knoxville, Tennessee, USA, 2005, pp. 1233-1235.
- [8] K. Yokoyama, et al, "Coupler Matching Techniques for C-Band Accelerating Section", Proceedings of PAC'05, Knoxville, Tennessee, USA, 2005, pp. 1431-1433.
- [9] T. Kamitani, et al, "Super-KEKB計画のためのCバンド加速管開発の現状", Proceedings of the 31th Linear Accelerator Meeting in Japan, Sendai, Miyagi, Japan, 2006.
- [10] http://mo-ohtsuka.co.jp/moflange/mokatalog.pdf