The calculation of transverse kick by the input coupler

of superconducting cavity for ERL main linac

Toshiya Muto^{#,A)}, Kensei Umemori^{B)}, Hiroshi Sakai^{B)}, Masaru Sawamura^{C)},

Kenji Shinoe^{D)}, Takaaki Furuya^{B)}

^{A)} Research Center for Electron Photon Science, Tohoku University

1-2-1 Mikamine, Taihaku-ku, Sendai, Miyagi, 982-0826

^{B)} KEK, High Energy Accelerator Research Organization

1-1 Oho, Tsukuba, Ibaraki, 305-0801

^{C)} Japan Atomic Energy Agency (JAEA)

2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki, 319-1195

^{D)} Institute of Solid State Physics, University of Tokyo (ISSP)

5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8581

Abstract

Energy Recovery Linac (ERL) for future light source has been developed by KEK, JAEA, ISSP and other institutes in Japan. An input coupler must feed high power, which is estimated about 20kW for 20MV/m ERL operation, into the main linac superconducting cavities. Because the input coupler induced an asymmetric electromagnetic field in the cavity, accelerating TM_{010} mode produce a transverse kick similar to higher order modes. Using CST Microwave-Studio (MW-Studio), we calculated the transverse kick of accelerating mode induced by the input coupler. In case of the "on crest" acceleration, the transverse kick by the transverse electric field and magnetic field are small as compared with the accelerating voltage. We also calculated the dependence with various inserted position of the coupler. In this paper, we will report the calculation of transverse kick and an arrangement of cavities to reduce the transverse kick.

ERL 超伝導主加速空胴の入力カプラーによる横方向キックの計算

1. はじめに

次世代光源を目指すエネルギー回収型リニアック (ERL)の開発が高エネルギー加速器研究機構(KEK)、 日本原子力機構(JAEA)及び東大物性研を中心として 進められている。ERL の超伝導主加速器空胴の入力 カプラーは CW 20kW 以上の大電力に対応しなけれ ばならない。現在、JAEA において入力カプラーの テストが精力的に行われている^[1]。

入力カプラーはビームパイプの横に取り付けられ ているため高次モードだけでなく加速モードでも空 胴内に非対称の電磁場が励起され、ビームに横方向 キックが与えられる。加速モードの横方向キックは 避けられないので CST 社の Microwave-Studio (MW-Studio)^[2]を用いて入力カプラーによる横方向電磁場 の大きさを見積もった。特に ERL の主加速器空胴 の入力カプラーはマイクロフォニックス等に対応す るために入力カプラーの挿入長を変えることで外部 Q 値をコントロールできる構造を持っているため、 横方向キックの挿入長に対する依存性を求めた。

2. エンドセルテスト空胴

計算に用いた空胴形状を図 1に示す。計算に用い た空胴はERL主加速器 9 セル空胴の上流、下流両端 のハーフセルを合わせたエンドセルテスト空胴と同 形状とした。キックを生む横方向の電磁場はカプ ラー周辺で発生すると考えられるので計算機のメモリを節約するためにこのエンドセルテスト空胴を計算に用いた。ERLの9 セル主加速空胴はquadrupole モードの軽減のためにカプラー側に偏心フルート ビームパイプを採用している。

図 1 エンドセルテスト空胴形状。ビーム軸からカプ ラーのアンテナ先端までの距離を coupler position と する。設計値は coupler position=55mm で±5mm の 範囲を可動する。カプラー外導体とビームパイプの 接合面は面取り加工(赤線)が施されている。

図 2のようにMW-Studioでモデリングを行った。計 算はDell Precision T5400 (CPU: intel Xeon E5440 2.83GHz 、メモリ:2GB)で行った。垂直面に対称面 を取っておりメッシュセル数は 100 万個程度であ る。図 3に示すようなメッシュを生成した。

図 2 モデリング形状 cut view

図 3 計算に用いたメッ シュ。赤点はメッシュの 固定点である。

3. 計算結果

3.1. 外部Q値と加速電場

計算結果の一例を図 4(電場分布)、図 5(磁場 分布)にそれぞれ示す。

図 5 加速モードの磁場分布

coupler positionに対するテスト空胴の外部Q値の変 化を求めた。図 6に結果を示す。計算結果からカプ ラーの設計可動範囲のcoupler position=50~60mmで外 部Q値= $5x10^5 - 2x10^6(シングルセル空胴換算)の範囲を$ 変えることができることがわかった。

図 6テスト空胴の外部Q値カプラー位置依存性 図 7に加速電場分布を示す。図 7より、coupler positionの広い範囲において加速電場は変化しない。

図 7 ビーム軸上の軸方向電場分布(加速電場)。エ ンドセル空胴のセルの中心を0としており、カプ ラーの中心は112.7mmになる。

3.2. 横方向電場によるキック

3.2.1. 電場分布のカプラー依存性

図 8に各coupler positionに対するビーム軸での横方 向電場をそれぞれ示す。カプラーを差し込むと横方 向電場が減少しているのがわかる。空胴の位置 100mmで横方向電場は最大となる。この位置はおお よそカプラーの中心導体の空胴側端部 112.7 - 22/2 = 101.7mmに等しい。

3.2.2. transit timeを考慮したキック電圧

電場の結果からビームが受けるトータルのキックの大きさを見積もる。実際にビームが受ける加速電 圧 *V_sとキッ*ク電圧 *V_t*は

 $V_{s,t} = \int E_{s,t}(s) \cos \omega t \, ds = \int E_{s,t}(s) \cos \frac{\omega}{\beta c} s \, ds$ と書ける。ここでビームは十分に相対論的な領域で あるので $\beta = 1$ 、"on crest"でビーム加速を行ってい るとしてビームが受ける縦方向と横方向の電場を求 めた。図 9にcoupler position=55mmの時の結果を示 す。結果からエンドセル空胴のキック電圧V_tと加速 電圧V_sの比Vt/Vs = 0.67x10⁻³ と求まった。

実際の加速空胴は1台のカプラーで9セルにパ ワーをあたえるため加速電圧は9倍される。した がって9セル加速空胴1台あたりの電場キック量は 10⁻⁴ order 以下になる。

- 図 9 coupler position=55mm、on crest 加速時のビーム が受ける電圧。赤線:縦方向、青線:横方向。
- 3.3. 磁場による横方向キック
- 次に磁場によるキックを見積もる。図 10に空胴 の磁場分布とビームが受ける磁場分布を示す。

図 10 ビーム軸上の横方向磁場分布。赤:空間分布、
青: transit time を考慮したビームが受ける磁場。
磁場キックによるビームの偏向角θは

$$\theta = \int d\theta = \int \frac{1}{\rho(s)} ds = 0.3 \int \frac{B(s)}{p} \sin \frac{\omega}{\beta c} s ds$$

と表せる。ここで $ds = \rho d\theta$ 、p[GeV]=0.3B[T] ρ [m] を用いた。磁場はカプラー付近に局在していること からビームは加速後(or 前)に磁場を受けると考えて p = const として扱った。計算結果から9 セル空胴の 加速電圧当たりのビームが受ける積分磁場は 1.1x10¹³ [Tm/V]であった。9 セル空胴の加速電場を 15MeV、 ビームを cERL の入射器のエネルギー5MeV^[3]とする とカプラーの配置によって偏向角 θ = 26 (下流配置) or 102 (上流配置) µradとなり9 セル加速空胴1 台当 たり 10⁴order 程度のキックであることがわかった。

4. 空胴配置によるキックの打ち消し

これまでの計算で電場および磁場によるキックは 10⁴ 程度と大きくないことがわかったが空胴の配置 によってさらに減らせる可能性がある。導波管の取 り回しなども考慮して空胴に対してカプラーを上流、 下流交互に配置することを考えている。これを模擬 するために図 11-aに上げるような空胴の上下流にカ プラーを持つような形状のキック磁場を計算した。 電磁場の空間分布を図 11-b,c,dに示す。図 11-c,dか ら空胴中心をs=0 とすると横方向電場は $E_t(s)=-E_t(-s)$ 、 磁場は $B_t(s)=B_t(-s)$ であることがわかる。

図 11 MW-Studio の計算結果。coupler position=55mm における x-z 平面分布。縦軸は強度を表し log scale で表示してある。

ビームをon crestで加速するとした場合のTransit timeを考慮したビームが受ける電場磁場をそれぞれ 図 12図 13に示す。on crest加速の場合、電場、磁場 両方とも上下流で打ち消し合っていることがわかる。

図 12 ビーム軸上の電場 分布。赤線:空間分布、 青線:ビームが受ける電 場分布

図 13 ビーム軸上の磁場 分布。赤線:空間分布、 青線:ビームが受ける磁 場分布

5. まとめ

MW-Studio を使って ERL 主加速空洞のカプラー による縦方向キックを見積もった。電場キック、磁 場キック両方とも 10-4 程度であることがわかった。 また、カプラーを空胴の上流下流と交互配置するこ とによってさらに小さくできることがわかった。

参考文献

- [1] 篠江憲治、他,"ERL 主ライナックのためのカプラー開発 –改良セラミック窓のハイパワー試験", in this proceedings
- [2] http://www.aetjapan.com/software/CST_Overview.php
- [3] 羽島良一 他,"コンパクト ERL の設計研究",KEK Report 2007-7,JAEA-Reseach 2008-032