THERMAL CYCLE TESTS OF RF WINDOWS FOR STF INPUT COUPLERS

Masato Satoh*, Eiji Kako, Shuichi Noguchi, Toshio Shishido, Ken Watanabe, Yasuchika Yamamoto

High Energy Accelerator Research Organization

1-1 Oho, Tsukuba, Ibaraki, Japan, 305-0801

Abstract

It is supposed that the difference of the linear thermal expansion coefficient between copper and ceramic caused vacuum leak at ceramic RF windows at low temperature in STF-1 cryomodule tests. Thermal cycle tests of several samples with improved design were carried out to confirm the reduction of the thermal strain at the ceramic RF windows.

STF超伝導空洞用入力結合器の高周波窓の熱サイクル試験

1. はじめに

異種材料の接合ではそれぞれの線膨張係数の違い による歪みがよく問題にされる。高周波回路で使用 されるセラミック窓もセラミックと銅材との接合は 確立された技術ではなく、歪みを軽減するための 様々な設計がなされる。また、Ansys 等のシミュ レーションコードによる構造計算も行われる。 KEK-STF におけるクライオモジュール冷却試験で 利用される超伝導空洞用入力結合器でも熱歪みの軽 減策がいろいろと取られていたが、セラミック製 RF 窓での真空リークが発生した。KEK-STF では次 期計画が進行中であり、この真空リークの問題に迅 速な対応が求められ、我々は歪み軽減策を強化した 試験器を製作し、熱サイクルを行い、改善策を検証 した。本論文では、真空リーク発生状況、試験器を 用いた熱サイクル試験の結果、および次期計画への 対応について述べる。

2. STF クライオモジュール試験

2.1 KEK-STF クライオモジュール試験の経過

KEK-STF は L バンド超伝導加速空洞の開発を目 的に 2005 年度から整備が進められて来た。空洞単 体の開発の他に安定運転を目的とする冷凍機、高周 波源を含むシステム全体も構築され試験が行われた。 4 空洞用のクライオモジュールを製作し、2007 年 10月~11月には1台の空洞のみによるクライオモ ジュール試験 STF-0.5 が実施された。2007 年 10 月 は低温低電力試験が行われ、11 月は低温で 130kW の大電力が投入された。続く 2008 年 5 月からは当 初予定の 4 空洞によるクライオモジュール試験 STF-1 が実施された。ここでは STF-0.5 で使用され た空洞ユニットと他の空洞ユニット3台を合わせて システムが構築され、2008年5月~7月にかけて低 温低電力による試験が行われた。夏の停止期間中は 一度室温に昇温されたが、9 月から再び冷却が行わ れ 12 月にかけて低温大電力試験が行われた。ここ で、1 空洞は3 度、3 空洞は2 度の熱サイクルが行 われたことになる。

2.2 低温窓と室温窓の温度状況

クライオモジュール試験時の空洞は 2K に冷却さ れる。空洞は熱侵入を防ぐために 5K と 80K の二つ の断熱シールドに覆われており、真空槽であるクラ イオモジュールに納めることにより真空断熱される (図1)。この超伝導空洞に高周波電力を伝送する のが入力結合器である。この入力結合器は室温側で はクライオモジュール外部の導波管に接続され、 方の低温側では空洞のポートに装着される。またク ライオモジュール組み立て上の制約により、入力結 合器は低温部と室温部の二つの部分から構成され、 各部にセラミック窓が1枚ずつ設けられている。図 1 に示すとおり、低温部のセラミック窓(以下、低 温窓)は 80K シールド近くに置かれ、冷却時は室 温から 80K に冷却される。もう一方の室温部セラ ミック窓(以下、室温窓)はクライオモジュール外 部に置かれ常に室温状態に保たれる。

図1:クライオモジュール断面図

2.3 低温試験後の真空リーク

STF-1 低温大電力試験が終了の 2009 年 1 月にク ライオモジュールは室温に戻され、入力結合器の真 空リーク試験が行われた。クライオモジュール外側 の室温窓、次に内部の低温窓の順にリーク試験を 行ったところ、4 台の室温窓全てに真空リークが見 つからない一方で、低温窓は4台中3台に真空リー クが発生していた。本来ならば投入電力の影響も考 慮すべきところであるが、室温窓に対して低温窓の 真空リーク発生状況が顕著であり、熱サイクルが大

^{*} masato.satoh@kek.jp

きな原因であると考えた。リークレートはいずれも 1×10⁴Pam³/s 程度である。

3. 真空リークの詳細調査

STF-1 解体後の 2009 年 6 月から低温窓のリーク 状況の詳細について、確認作業を開始した。最初に 各部をマスキングしながら通常の真空リーク試験を 行い、真空リークは全て低温窓上の内導体付近で発 生していることが分かった。セラミック窓は内外導 体にチョーク構造を有するために、蝋付け部を直接 に観察することが出来ない(図 2、図 6 参照)。 従ってワイヤーカッターによりチョーク部を切断し、 セラミック窓蝋付け部を直接観察することにした。

図2:ワイヤーカット後の低温窓

図 2 はワイヤーカット後の低温窓である。セラ ミック窓と内外導体、他に機械的強度を高めるため の SUS フレームと SUS の心棒があり、チョーク構 造も見ることが出来る。蝋付け部を直接観察できる ようになり、最初にスニファー試験を実施した。低 温窓の内部に 1.2 気圧の He ガスを封入し、スニ ファープローブを内導体蝋付け部に当て、22.5° ピッチで全周 360° を調べた。角度分解の 22.5° は 内導体外径の 24.0mm とスニファープローブ外径 6.0mm により決定される。また、外導体側蝋付け部 も同時にスニファー試験を行い、再度真空リークが ないことを確認した。スニファー試験の低温窓蝋付 け部の結果を図 3 に示す。いずれも 2×10⁻⁴Pam³/s 程度のピークであり、通常リーク試験の結果と一致 している。またスニファー試験と並行して石鹸水に よる確認も行った。図4は No.3 低温窓に石鹸水を かけた様子を示しており、スニファーで見つかった 239°の他に 128°にも泡の吹き出しが発生した。 つまり、スニファー試験の場合は小さなリークは大 きなリークのバックグランドに隠れて発見が困難で あることが分かる。一方、石鹸水による確認は同じ サンプルであっても泡が出る場合と出ない場合があ り、再現性は良好ではない。図4では内導体銅パイ

図3:スニファー試験結果

図4:石鹸水によるリーク確認

プの内側に、後述するモリブデンリングが蝋付けさ れている様子が見える。

スニファー試験後は低温窓 No.1, No.3 に対してカ ラーチェックを行った。結果の一部を図 5 に示す。 写真のとおり色素沈着が見られるのは蝋付け部およ び蝋付け付近のクラックであり、スニファーで確認 されたリーク箇所はすべて蝋付け部であった。ただ し、カラーチェックの感度は良好であり、スニ ファー試験の結果以外の場所にも色素沈着が見られ、 顕微鏡による確認が必要なほど微細な沈着も見られ た。

図5:カラーチェックの結果

スニファー試験とカラーチェックからは、どの段 階であるかは不確かであるがセラミックディスクに クラックが入るほどの歪みが生じていること、真空 リークは内導体蝋付け部で発生することが分かった。 しかもリークレートがどのサンプルでも一致してい るので、歪みによる損傷は同じ程度であり、同じよ うな経過を辿り真空リークが発生したと考えること ができる。これはセラミックと銅の異材接合に由来 すると考えられる。

セラミック窓と線膨張係数 4.

4.1 セラミック窓の基本構造

KEK-STF で採用されているのはディスクタイプ のセラミック窓である。周辺の構造を単純化でき、 加工と製作が容易である長所を有する。STF-1 で採 用されたセラミック窓の概要を図6に示す。

円形セラミックディスクの寸法は外径 92mm、中 外導体の銅パイプが差し込まれ、蝋付けを行う。蝋 付け温度は約 1000℃である。STF-1 で使用された内 外導体の銅パイプ肉厚は 1mm である。また、図に 示されているとおり、内外導体の蝋付け部に覆い被 さるようにチョーク構造が設けられている。チョー ク構造は誘電体であるセラミックが挿入された分、 インピーダンス整合させる役割と大電力の電磁界か ら蝋付け部の電界集中を緩和する役割を担う。図7

は内導体側蝋付け接合部を拡大したものである。内 導体銅パイプの外面はセラミックディスクと蝋付け され、同じ位置の裏面にはモリブデン製のリングが セラミックと一緒に蝋付けされる。このリングは厚 さ 0.25mm、幅 8mm である。モリブデンはセラミッ クとほぼ同じ線膨張係数を持ち、セラミックと一緒 に蝋付けすることにより銅の変形を抑制することが 出来ると考えられている。

4.2 使用材料の線膨張係数

Lこで使用材料の線膨張係数を図 8 に示す。5K の低温から蝋付け温度に近い 1200K(930℃) まで のセラミック、銅、モリブデンの線膨張係数の変化 が示されている。図が示すとおり 200K 以上の領域 では、銅の線膨張係数はセラミックとモリブデンの 約 3 倍であり、100K の低温状態ではセラミックが 8×10⁻⁷であるのに対し、銅は1×10⁻⁵と10倍以上の 膨張率を有する。この 1×10⁻⁵ という値は多くの材 料が室温で持つ線膨張係数と同程度であり、100K においても銅は良く収縮することを意味する。従っ て、低温窓を 80K の低温状態に冷却するというこ とは蝋付け温度から室温まで冷却される時に生じる 歪みと室温から 80K に冷却する時の二つの歪みが 加算されることになる。熱歪みという面では室温窓 よりは厳しい条件で使用することになる。

試験器の製作 5.

KEK-STF では DESY、FNAL とクライオモジュー ルシステムの共同開発研究 S1-Global (以下 S1-G) が進行中であり、2010年6月から8空洞クライオ モジュール試験が開始された。改良した低温窓を S1-G に用いるためには熱歪みを軽減する必要があ る。これに迅速に対応するために我々は試験器を製 作し、熱サイクルによる検証試験を行うことにした。 試験器で最初に試した熱歪み軽減策は、内導体銅 パイプが温度変化に対し容易に弾性変形できるよう にすることで、周囲への影響を極力抑えようという ものであった。具体的には内導体銅パイプ肉厚を 1mm から 0.8mm に薄くすることにした。板材の内 部応力は厚みの3 乗に比例するので、この変更によ り内部応力を 0.5 倍程度に軽減され、弾性変形も容 易になる。また、銅パイプの変形を矯正しているモ リブデンリングについては銅パイプの弾性変形をあ

る程度許容することが好ましいと考え、厚さ 0.20mmの薄いものを採用することにした(試験器 #2)。ただし、銅パイプ肉厚 0.8mmの効果を見極 めるために STF-1 で用いられたモリブデンリング 0.25mmの試験器も一緒に製作した(試験器#1)。 図 9 に試験器#1、#2 を示す。全体の構造としては セラミック窓が内外導体に蝋付けされ、片面には チョーク構造と一体の真空排気用のフランジがあり、 その裏面は蝋付け部を直接観察できるようにチョー ク構造が取り除かれている。試験器#1、#2 の熱サ イクル試験は 2009 年 9 月から開始され、この結果 よって S1-G にフィードバックが掛けられた。

一方で真空封止を強化する目的で、蝋付け時の蝋 材をセラミック窓 c0.6mm のトリミング部に被覆す ることを考えた。c0.6 トリミングに蝋材被覆がある もの(試験器#4)と被覆がないもの(試験器#3)が 製作された。ここで試験器#1 と#3 は同じ寸法仕様 である。

内導体銅パイプは両者ともに 0.8mm であり、#1 が 既存タイプのモリブデンリング 0.25mm、#2 が 0.20mm である。

図 10: 試験器#3、#4 試験器#3、#4 の両方ともに内導体銅パイプは 0.8mm、モリブデンリング 0.25mm である。#4 は真 空封止を改善するために c0.6 トリム加工面に蝋材 の被覆を設けた。

5. 熱サイクル試験結果

熱サイクル試験の結果は図 11 の通りである。結 果はモリブデンリングの厚さが 0.20mm である試験 器#2 だけに真空リークが発生し、他 3 台には真空 リーク発生はなかった。銅パイプの弾性変形を容易 にするためと考えた措置は逆効果であることが分 かった。2009 年 10 月のこの結果を受けて S1-G で は内導体銅パイプ 0.8mm、モリブデンリング 0.25mm で製作することになった。

一方で試験器#3、#4 の蝋材被覆の有無について は 10 回の熱サイクルで違いは見られなかった。更 に確認のために銅パイプ 0.8mm、モリブデンリング 0.25mm という寸法仕様の熱歪みに対する耐久試験 を継続中である。

6. まとめと今後の活動

STF-1 で発生した低温窓の真空リークトラブルは 試験器による熱サイクル試験により耐久性の高い寸 法仕様を見出すことが出来た。この結果は KEK-STF で現在進行中の S1-G クライオモジュール試験 に反映することができた。ここでは 2010 年 8 月下 旬から入力結合器のエージングが開始され、10 月 からは STF-1 を上回る大電力試験も始まり、低温窓 の経過観察は今後も必要である。一方で試験器#3、 #4 の熱サイクル試験を今後も継続し、耐久性を確 認する予定である。

参考文献

- H.Sakai, et al., "1.3GHz 主加速器用 20kW 入力カプラー 開発の現状", Particle Accelerator Society Meeting 2009-Proceedings JAEA, Tokai, Naka-gun, Ibaraki, Japan
- [2] http://riodb.ibase.aist.go.jp/TPDB/AJAX/