Equivalent circuit analysis of 950 keV linac

Takuya Natsui*, Lee Kiwoo, Mitsuru Uesaka Nuclear Professional School, School of Engineering, University of Tokyo 22-2 Shirane-shirakata, Tokai, Naka, Ibaraki JAPAN 319-1188

Abstract

We are developing a portable 950 keV X-band (9.4GHz) electron linac X-ray source for on-site nondestructive testing. To realize an on-site diagnostics, we adopted a compact X-band 9.4 GHz magnetron of 250 kW for RF generation device. We aim to generate 0.2 Gy/min of X-ray at 1-m distance. However, this linac have a problem of short beam current. We could not obtain comfortable amount of X-ray. In the beam current measurement, we found a oscillation of beam current in the 2.5 μ sec pulse. This beam oscillation makes lack of beam current. Consequently, we developed a new simulation code using equivalent circuit analysis for research into a source of this matter. As a result, we ware able to elucidate the cause.

950 keV linac における等価回路解析

1. はじめに

東京大学原子力専攻では小型非破壊検査用 950 keV 電子 linac の開発を行っている.この linac は on-axis カップリングの APS 型であり,250 kW 出力の 9.4 GHz マグネトロンを RF 源としている.当初,80 mA の加速ビーム電流を見込んで設計されたが,実験において十分なビーム量が得られなかった.さらに 2.5 usec のビームパルス内においてビーム電流量の振動が観測された^[1].

950 keV linac においてはビーム加速試験において, ビーム電流とエネルギースペクトラムが測定されてい る.図1はエネルギー測定体系の写真である.このエネ ルギー測定において,ビームのエネルギーはほぼ設計値 に達ししているものの電流量が振動していることが分 かった.その振動の周期は9.4 MHz であった.

この問題は,ビームと加速電場との相互作用によって 引き起こされると予想された.すなわちビームローディ ングが加速管の中の RF パワーを変化させ,それにより ビーム加速状況がまた変化するということが繰り返さ れていると考えられた.

そこで,このような現象を計算できるようなシミュ レーション方法を選択し,新たに計算コードを作製し た.これは,等価回路解析にビーム加速とビームロー ディングの効果を付加したものである.完成した計算 コードでシミュレーションを行ったところ実験と同様な 現象を再現することができた.

2. 計算手法

ビーム振動の原因は「高周波発生源の振動」と「加 速管そのものの特性の問題」の2種類が考えられたが, さまざまな実験と考察から加速管そのものの特性であ ることが分かった.加速管の特性の問題点はシミュレー ションでは計算できない過渡的な現象に起因して起こっ ていることになる.また,ビームを少なくすると振動現 象がなくなることから,ビームと高周波の相互作用によ りこの現象が引き起こされることが予想された.

図 1: 950 keV linac におけるビームエネルギー測定体系

そこで,ビームと高周波の相互作用を時間領域で計 算できる方法のシミュレーションが必要となった.この ような現象を計算できる方法として PIC(Particle In Cell) 法があるが,今回の現象には適用できないと結論付け た.なぜなら,PIC法で計算できる時間スケールは高周 波の周期で数周期分ほどの時間で,今回のように1000 周期以上の計算では時間的にも難しい.さらに,加速管 のようにQ値が高い共振空洞の連成振動体においては, 個々の空洞のわずかな周波数差であっても性能に大きく 影響が出る.そのようなものをPICで計算しても長時 間計算では誤差が蓄積されて正確な結果を出すことは 非常に難しい.

そこで,時間的,精度的に今回の現象に適している方 法として等価回路計算を応用することにした.等価回路 計算とは加速管を考えるとき,電磁場を直接解くのでは なく,共振空洞連性振動体としての加速管特性を電気回 路に置き換える,という方法である^[2].この方法では, 各空洞の共振周波数,結合係数,Q値などが直接設定で きるため,加速管特性を決定付けるこれらの数値に誤差 が入ることがない.そのため長時間計算でも正確に加速 管の特性を再現できる.また,計算速度も非常に速い. この方法にビーム加速計算を繰り込むことで今回の現 象をシミュレーションできる.ビーム加速計算は計算時 間の関係から1次元モデルとし,回路モデルからの電磁 場情報を受けて加速し,その加速によるビームローディ

^{*}n-takuya@nuclear.jp

ングをまた回路モデルにフィードバックするという方法 を用いた .

加速管は共振空洞が連結されたものであり,それぞれの空洞の内部では電磁場が共振状態を作っている.空洞同士は空間的につながっているので連成振動となる.この加速管の共振空洞一つ一つを電気回路のLC共振状態に見立てて,空洞同士の結合度を相互インダクタンスで表した回路が,加速管等価回路としてよい近似になることが知られている.ここでは,周期的に並んだ空洞を図2の回路に示すような等価回路モデルで考える.これは,LCR回路が結合係数kの相互インダクタンスで結合した回路である.今,結合されたLC回路がN個あり,n番目の回路に流れている電流を I_n とする.

図 2: 加速空洞の等価回路モデル

では,この回路についての微分方程式を立てていく. まず,n番目の回路についての微分方程式は

$$R_{n}i_{n} + L\frac{\mathrm{d}i_{n}}{\mathrm{d}t} + \frac{1}{C_{n}}\int_{0}^{t}i_{n}dt + \frac{k_{n-1}}{2}L\frac{\mathrm{d}i_{n-1}}{\mathrm{d}t} + \frac{k_{n+1}}{2}L\frac{\mathrm{d}i_{n+1}}{\mathrm{d}t} = e(t) \quad (1)$$

となる.ここで,少し式を整理する.まず,各回路の共振周波数 ω_n と Q 値 Q_n を

$$\omega_n = \frac{1}{\sqrt{LC_n}} \qquad Q_n = \frac{1}{R_n} \sqrt{\frac{L}{C_n}} = \frac{\omega_n L}{R_n}$$

と置く. さらに, この式はまだ自由度がひとつあるの で, L = 1 と置いてしまう (重要なのは回路もってい るエネルギー, すなわち Stored energy である.) 以上の ような関係を用いて (1) 式を書き直すと

$$\omega_n^2 i_n + \frac{\omega_n}{Q_n} \frac{\mathrm{d}i_n}{\mathrm{d}t} + \frac{k_{n-1}}{2} \frac{\mathrm{d}^2 i_{n-1}}{\mathrm{d}t^2} + \frac{\mathrm{d}^2 i_n}{\mathrm{d}t^2} + \frac{k_{n+1}}{2} \frac{\mathrm{d}^2 i_{n+1}}{\mathrm{d}t^2} = \frac{\mathrm{d}e(t)}{\mathrm{d}t}$$
(2)

となる.

さらに,(2)式を行列の形で書き表せば,

$$M_1 i + M_2 i' + M_3 i'' = e'$$
 (3)

..

となる.ただし,

$$\boldsymbol{M}_{1} = \begin{bmatrix} \omega_{1}^{2} & 0 & 0 & \cdots & 0 \\ 0 & \omega_{2}^{2} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & \omega_{N-1}^{2} & 0 \\ 0 & \cdots & 0 & 0 & \omega_{N}^{2} \end{bmatrix}$$
$$\boldsymbol{M}_{2} = \begin{bmatrix} \frac{\omega_{1}}{Q_{1}} & 0 & 0 & \cdots & 0 \\ 0 & \frac{\omega_{2}}{Q_{2}} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & \frac{\omega_{N-1}}{Q_{N-1}} & 0 \\ 0 & \cdots & 0 & 0 & \frac{\omega_{N}}{Q_{N}} \end{bmatrix}$$

である.

この多元連立2階微分方程式を解くことで加速管の 等価回路解析が可能である.ただし, M₃は両端の境界 条件によって多少形が変わることがある.

式(3)のように解くべき微分方程式は決まっている. しかしながら,時間領域での計算では,後ひとつ考えな ければいけない項目が残っている.それは,導波管との カップリングである.図2の等価回路の給電では,内部 Q(Q₀)だけを考慮した形になっているのである.さて, 外部との結合を考えた場合は,導波管の特性インピーダ ンスにあたる抵抗を電圧源の内部抵抗として取り込ん でやればよい.つまり図3のような形である.電圧源の 電圧と抵抗r₀の値を決めなくてはいけない.これは定 常解を求めた時の回路全体のインピーダンスから求め られる.

図 3: 外部との結合を考慮した加速管等価回路モデル

供給電力を P,外部との結合係数 β としたときの電 圧源の実効値 E,内部抵抗 r_0 はそれぞれ,

$$r_0 = \beta \operatorname{Re}\left[Z_{st}\right] \tag{4}$$

$$E = 2\sqrt{Pr_0} \tag{5}$$

である.また,この抵抗成分を含めた方式に式(3)を書き換えると単に M_2 に電源内部抵抗 r_0 が加わるだけである.この成分の行列を $M_{r0}(m_{nn} = r_0$ ほかは0)として $M_2' = M_2 + M_{r0}$ を定義すると,

$$M_1 i + M'_2 i' + M_3 i'' = e'$$
 (6)

となり,まったく形は変わらない.

この微分方程式を解くことでで,時間領域で加速管 内の電場強度も求められる.これを元に荷電粒子の加速 シミュレーションを行うこともできる.さらに,加速粒 子に与えら得たエネルギーが空洞からなくなったエネル ギーと考えれば,ビームローディングを計算したことに なる.このビームローディングを等価回路計算にフィー ドバックする方法を考える.

ビームローディングは回路の周期に比べれば十分長い時間領域と考えられる.したがって,基本的は高周波周期の1周期を基準に考えていく.1周期分のエネルギー変化を ΔU_e とするとビームローディングの電力 P_e は,

$$P_e = \Delta U_e f \tag{7}$$

である.この消費電力は新たな抵抗 *R_e* を追加すること で表現する事とする.

今,回路に流れている電流がIとすると,ビームローディングに起因する抵抗値 R_e は,

$$R_e = \frac{P_e}{|I|^2} \tag{8}$$

となる.これを,先の行列 M_2 に繰り込めばビームロー ディングを表現でき,加速管の共振モードとビーム加速,またそれらの相互作用が計算できる.

3. 計算結果と考察

シミュレーションコードは C++を使い自作した.こ のコードを用いて 950 keV linac の加速空洞の特性を入 力し,実験時の電子ビーム値を入射する条件で計算を 行った.その結果,実験と同じように計算でもビームが 振動するという現象が見られた.また,実験では入射 ビームの電流値を低くすれば振動が起こらなかったが, 計算でも同じように低電流では振動現象が見られなかっ た.それら結果のまとめを表1に記す.

表	1:	計算結果	と実験結果	の比較

	振動(周波数)		
電流値	550 mA	190 mA	
実験	有 (9.4 MHz)	無	
計算	有 (13 MHz)	無	

表1のように実験結果とほぼ同じ振動現象を計算す ることができた.ただし,周波数については多少違いが あるので,計算は定性的な部分のみを再現することがで きた,と言える.これは,ビーム加速が1次元の計算で あることに大きな原因があると予想できる.

計算結果を解析すると,加速管の中のストアドエナ ジーも大きく振動することが分かった.さらに,ストア ドエナジーの変化に伴ってビーム加速状態が著しく変化 していた.ビームローディングによりストアドエナジー 変化が起こりビームがいったん加速されなくなるが,そ うすると再びストアドエナジーが増えだす.すると最初 の状態に戻り,ビームが加速され,ローディングが大き くなる.ということが繰り返される結果,ビーム電流量 が振動することが分かった.

これは,加速管の形状と950 keV のエネルギー領域に 原因がある.950 keV は電子が光速の94%にしか達し ていない状態であり,この領域の電子加速は大きな速度 変化を伴う.したがって,加速電場が変化するとビーム の速度も大きく変わり,加速位相から外れやすくなる. このような不安定な加速領域にもかかわらず多くの空 洞で長い距離をかけて 950 keV まで加速しようとして いるので,平衡状態に落ち着くことがなくなってしまっ ていたと結論付けられる.できるだけ高電場で短い距離 の中でビーム速度が変わりやすい領域を抜け出すよう な加速管設計が必要であることがわかった.

4. 2 号機設計

以上のことから, できるだけシャントインピーダン スが高く, さらに前半に高電場をかけるような950 keV 加速管が必要になった.そこで2号機は, シャントイン ピーダンスが高く, 電場分布を比較的自由に設計できる サイドカップル空洞を採用した.空洞設計は MW-studio を使用して3次元設計を行った.図4が設計した空洞の 全体図である.

図 4: サイドカップル空洞で設計した加速管の形状

この加速管は全長 100 mm 以下であり, APS 空洞を 採用した1号機の半分以下の長さである.また,この加 速管パラメータを使用して作製したコードで等価回路 解析を行い,振動現象が起こらないことを確かめた.し たがって,2号機は1号機の問題が起こらないと予想さ れる.

5. まとめ

東京大学原子力専攻上坂研究室で開発を行っている 非破壊検査用 950keV X-band linac においてビーム電流 振動が問題になっていた.これを計算するため等価回路 解析を用いたシミュレーションコードを C++言語で新 しく開発した.この結果,ビーム振動現象を定性的に再 現することができ,ビーム振動現象の原因を突き止める ことができた.サイドカップル空洞を採用した2号機を 設計し,振動問題が起こらないことをこのコードを使っ て確かめ,現在製作を予定している.

参考文献

- [1] T. Natsui, et al, AIP Conf. Proc. 1099, pp. 75-78
- [2] E. A. Knapp, et al, The Review of Scientific Instruments 39. 7 July 1968 pp.979-991